
Eurographics Conference on Visualization (EuroVis) 2022
R. Borgo, G. E. Marai, and T. Schreck
(Guest Editors)

Volume 41 (2022), Number 3

Leveraging Analysis History for
Improved In Situ Visualization Recommendation

Will Epperson1 , Doris Jung-Lin Lee2 , Leijie Wang3, Kunal Agarwal2,
Aditya G. Parameswaran2 , Dominik Moritz1 , Adam Perer1

1Carnegie Mellon University, Pittsburgh, PA, USA
2UC Berkeley, Berkeley, CA, USA

3Tsinghua University, Beijing, China

Analysis Code

+
History

Figure 1: Solas tracks the history of a user’s analysis to provide improved in situ visualization recommendations. Above, a user has most
recently created the Class column that is visualized on the left side of the interface. Recently executed Pandas commands interacted with
Worldwide_Gross, Viewership, and MPAA_Rating; therefore, Class is shown relative to these columns.

Abstract
Existing visualization recommendation systems commonly rely on a single snapshot of a dataset to suggest visualizations to
users. However, exploratory data analysis involves a series of related interactions with a dataset over time rather than one-off
analytical steps. We present Solas, a tool that tracks the history of a user’s data analysis, models their interest in each column,
and uses this information to provide visualization recommendations, all within the user’s native analytical environment. Rec-
ommending with analysis history improves visualizations in three primary ways: task-specific visualizations use the provenance
of data to provide sensible encodings for common analysis functions, aggregated history is used to rank visualizations by our
model of a user’s interest in each column, and column data types are inferred based on applied operations. We present a usage
scenario and a user evaluation demonstrating how leveraging analysis history improves in situ visualization recommendations
on real-world analysis tasks.
CCS Concepts
• Human-centered computing → Visualization; Visualization systems and tools;

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-2745-4315
https://orcid.org/0000-0003-1922-2482
https://orcid.org/0000-0002-4538-4752
https://orcid.org/0000-0002-3110-1053
https://orcid.org/0000-0002-8369-3847

Epperson et al / Leveraging Analysis History for Improved In Situ Visualization Recommendation

1 Introduction

During exploratory data analysis, analysts iteratively explore differ-
ent methods for cleaning, aggregating, and filtering to make sense
of their data [KHM17]. Throughout this exploration, recommended
data visualizations can help users understand their analysis and de-
termine next steps by automatically visualizing interesting relation-
ships. However, most existing visualization recommendation sys-
tems provide recommendations on a single data snapshot that fails
to capture the dynamic nature of analysis.

Recognizing this limitation, recent visualization recommenda-
tion libraries have started providing dynamically chosen recom-
mendations in situ during the iterative process of data analy-
sis [80820, PP, sd, Fbd, ada, LTA∗22]. For example, the Lux library
generates visualization recommendations when users display Pan-
das dataframes in a computational notebook. This in situ, dynamic
approach to visualization recommendation has seen considerable
adoption, and helps analysts identify valuable next steps in anal-
ysis [LTA∗22]. However, existing libraries use a single snapshot
of the dataset and/or the last data analysis or transformation step
issued by the user, as opposed to the rich history of the user’s ex-
ploration across steps. This history captures not just implicit user
interest, but also provides cues into the underlying data semantics.

In this paper, we show how analysis history can improve rec-
ommendation. With analysis history, we can better understand both
the provenance of data as users apply iterative transformations and
which parts of the data users are likely interested in visualizing.
For example, if a new column is created, a natural next step may
be to visualize the distribution of this column. If an analyst has
also recently explored other columns, we can suggest visualiza-
tions with these sets of columns to facilitate comparison. Over time,
we build a model of a user’s interest in each column of their data.
Each time a user interacts with their data we update this model to
reflect their current interests and use this information to improve
visualization recommendations. By tracking history, we can also
preserve data that is no longer in the current dataframe for visual-
ization. For instance, when a filter is applied to data, we plot the
unfiltered distribution alongside the filtered distribution to add con-
text. Systems without the provenance provided by analysis history
have no knowledge of how to combine these dataset iterations. Ad-
ditionally, the operations a user applies to each column provide a
hint about the high-level measurement types of the columns. For
example, when a multiplication or division operation is applied, a
column can be inferred as quantitative. As we track analysis his-
tory, we use these operational signals to do better type inference
and visualize columns according to this inferred type.

Using analysis history for recommendation is difficult for sev-
eral reasons. First, dataframes must be instrumented so that history
is logged with all relevant parameters and column interactions. This
also involves logging parent-child links between dataframes when
an operation returns new data and transferring history to the new
dataframe. Second, each analysis operation must be interpreted to
understand how the operation should be visualized and what data
type information can be learned. We need to use the semantics of
data returned from certain operations to offer tailored task-specific
visualizations. Lastly, combining analysis history into a model of a
user’s interest in each column is non-trivial. Analysts shift their fo-

cus as they learn more about which parts of the data they find inter-
esting. More recent data interactions yield a stronger signal about
which parts of the data should be visualized and older interactions
become less relevant over time.

We address the aforementioned challenges by integrating his-
tory tracking into a visualization recommendation tool, Solas. Our
tool demonstrates how the extra information from analysis history
leads to more insightful and better visualization recommendations.
We provide a user evaluation of our task-specific recommendations
that demonstrates that Python users find our provided visualizations
useful for understanding the returned data from analysis functions.
In summary, our contributions are as follows:

1. We provide an extensible approach for logging, weighing, and
combining data interactions during analysis.

2. We demonstrate how to use the semantics of the data returned
from specific analytical function calls to visualize them with ap-
propriate encodings. These task-specific visualizations often in-
clude data from previous analysis steps.

3. We introduce a method for aggregating over history to model
user interest in columns and to update inferred data types based
on data transformations.

2 Background and Related Work

Two areas of interest are relevant to this work—interacting with
analysis history and prior work on visualization recommendation.

2.1 Interacting with Analysis History

Provenance is often used to describe the history of how data and
analysis evolve over time. Data provenance is used to understand
analysis history, adapt to user preferences, and suggest next steps in
a variety of analysis settings [XOW∗20]. Graphical histories offer
an approach for exploring the analysis history logged from a user’s
UI interactions with the visualization tool Tableau [HMSA08]. B2
logs an analyst’s interactions with data as code snippets in a note-
book so they can more easily recreate an analysis [WHS20]. Anal-
ysis history is also useful in experimentation and versioning so that
analysts can track multiple versions of an analysis, switch between
versions, and interact with these histories during exploratory pro-
gramming [KHM17, KM18, KRA∗18, WDBD21]. Solas offers a
unique method for tracking analysis history through the code ex-
ecuted and suggesting visualizations from this history.

Aggregated past analyses can also be used to suggest potential
next steps. Data scraped from Jupyter notebooks on GitHub has
been used to suggest possible function parameters during analy-
sis or to suggest next steps based on a user’s current exploration
path [YH20, RCK∗21]; similar approaches have been used to rec-
ommend related SQL queries during analysis [AGG∗15]. Data
scraped from public repositories only represents a single snapshot
of analysis and thus does not contain the full history of the user’s
exploration; Solas captures more detailed data interactions.

2.2 Visualization Recommendation

Visualization recommendation typically has two goals: (1) help-
ing analysts follow best practices by creating visualizations that are
both expressive and effective, and (2) removing the tedium of craft-
ing visualizations to make the exploration process faster and more
robust [Hee19]. These goals manifest in systems that recommend

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Epperson et al / Leveraging Analysis History for Improved In Situ Visualization Recommendation

a combination of design and data variations [WMA∗16a]. Design
variation shows data in a variety of visual encoding to a user to
allow them to select the best way to visualize their data; data vari-
ation shows different combinations and subsets of the data to help
users find interesting trends or patterns.

2.2.1 Recommending Design Variation

One of the early systems to focus on visualizing design variation
was Mackinlay’s APT system [Mac86]. APT recommended visu-
alizations that satisfied the competing criterion of expressiveness
(conveying the truth) and effectiveness (is the truth readily per-
ceived). Later work also focused on presenting a variety of de-
sign encodings to an analyst that satisfy constraints on design best
practices [MWN∗19], or based on user-specified interest [MHS07].
Most similar to our work is Behavior-Driven Visualization Rec-
ommendation (BDVR) which matches a user’s patterns of analysis
to suggest alternative visual encodings [GW09]. Our work is dis-
tinct in several ways, namely that we track a user’s analysis history
through their code rather than direct manipulation and thus impose
fewer restrictions on user inputs. By situating Solas in the Jupyter
ecosystem, we provide visualizations when the alternative is no vi-
sualization at all, whereas all exploration in BDVR is visual.

2.2.2 Recommending Data Variation

Another complementary approach to visualization recommenda-
tion focuses on recommending data variation to the user. Foresight
allows users to explore by selecting a guidepost metric of particular
interest (such as high correlation) and then view charts with similar
statistics [DHPP17]. In Zenvisage, users specify a query by sketch-
ing the general chart pattern they are looking for, such as a sharply
increasing linear curve, and are presented with charts that loosely
match this pattern [SKL∗16].

The Voyager and Voyager 2 recommendation systems are
driven by the maxim to “show data variation not design varia-
tion” [WMA∗16b, WQM∗17]. In these systems, a user specifies
an attribute of interest, and the system shows visualizations of this
attribute with one other attribute (possibly a wildcard) ranked by
perceptual effectiveness scores. Furthermore, the CompassQL rec-
ommendation engine underlying these systems supports the partial
specifications of visualizations that can fill in reasonable defaults
according to best practices [WMA∗16a]. Similarly, SeeDB allows
a user to specify a base data query and the system finds interest-
ing visualizations by comparing statistics between charts such as
the skew or correlation of the data [VRM∗15]. Despite their fo-
cus on data exploration, data variation systems notably all focus on
a single iteration of a dataset as input. However, during their ex-
ploration, analysts are transforming, adding, and deleting data. By
taking into account the provenance of data, Solas uses the history
of analysis to provide improved recommendations.

Solas is an extension of the popular Lux library that recommends
visualizations for Python Pandas dataframes [LTA∗22]. Lux allows
users to center recommendations around a particular attribute or
subset of the data through a manually specified intent. However, in
initial studies of the Lux system, users seldom used the intent spec-
ifications and found the in-place, immediate recommendations that
Lux provides to be most helpful [LTA∗22]. By tracking analysis
history, Solas is able to automatically infer user intent and recom-

mend appropriate visualizations. History tracking, task-specific vi-
sualizations afforded by history, and operational type inference are
all unique to Solas. Solas groups recommended visualizations into
the same semantic tabs as Lux such as Correlation, Distribution or
Occurrence but sorts the charts in each of these tabs by the model
of user column interest. The history tracking capabilities of Solas
are not tied to Lux and can also be applied to other systems.

3 Tracking Analysis History

Our system design brings analysis tracking to users’ native data
analysis environments so they can use their normal data explo-
ration tool stack. Solas tracks history for the popular Python data
manipulation library Pandas and presents visualizations directly
within Jupyter notebooks. Pandas is the most popular data manip-
ulation library in Python, with over 300 million downloads as of
2021 [Pan]. Likewise, computational notebooks in Jupyter have be-
come the tool of choice for data science in Python [Per18]. Due to
their widespread adoption, Solas focuses on analysis history track-
ing and visualization in this ecosystem. Users can explore their data
using Pandas and Solas automatically creates visualizations based
on their analysis history.

3.1 Logging Python Pandas Function Calls

Most analytic actions in Pandas occur through the DataFrame and
Series APIs which are abstractions over data tables and arrays, re-
spectively. To collect analysis history, we override the Pandas API
at runtime so that operations applied to dataframes or series are
captured. For the user, the API does not change and they can use
Pandas functions like normal; behind the scenes, whenever one of
the overridden functions is called, we log the interaction to that
dataframe’s history. Although Pandas supports some unique ana-
lytic functions for series or dataframes, the Solas user experience is
not substantially different depending on the underlying data object
so we focus the majority of our examples on dataframes.

For each operation, we collect four pieces of information: the
dataframe this operation occurred on, the data columns in the op-
eration, the type of operation, and the time (in terms of execution
count) when this operation occurred. In Jupyter, code is organized
into cells that can be executed in arbitrary order. The output of the
chunk of code in a cell is shown immediately below the cell. When-
ever a cell is executed, the execution count increases by one and
thus we use execution count as a time ordering of analysis com-
mands. When df["Medal"].value_counts() is run, Solas logs
that this operation occurred on the dataframe df, referenced the
Medal column, was a value counts operation, and occurred at a
certain execution count during the analysis. We discuss how we
use this information for improved visualizations in Section 4.

Solas maintains its own history of operations for each dataframe
or series object. This was an intentional design decision since users
may have dozens of dataframes in memory so we want to be sure
to show relevant visualizations for each dataframe. This also re-
solves ambiguities when two dataframes have the exact same col-
umn names but different data so interest in the Age column of one
dataframe does not influence interest in the Age column of another.

Beyond a single operation, analysis history represents a sequence
of operations over time. Many analysis steps return new dataframes
or change an existing dataframe. Figure 2 demonstrates how a

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Epperson et al / Leveraging Analysis History for Improved In Situ Visualization Recommendation

Task Code Example Information Learned
Column Reference df["A"] Increased interest in A column.
Column Assignment df["B"] = df["A"] * 10 Interest in A and B. Both must be quantitative.
Value Counts df.A.value_counts() Increased interest in A.
Describe df.describe() Increased interest in quantitative columns of df.
Groupby, Aggregate df.groupby("C").agg({"B":"mean"}) Increased interest in B, C. C is nominal and B quantitative.
Aggregate df.mean() When plotting show error bars.
Filters df[df.A > 30] Interest in A. A is at least ordinal.
Null Checks df.isna() Plot as stacked bar.
Correlation df.corr() Plot as correlation matrix.

Table 1: Common analysis tasks that have accompanying task-specific visualizations in Solas. When an operation is performed, it is added
to the history of that dataframe.

filtering operation on df_movies at time step 11 returns a new
dataframe that is assigned to the variable filt_df. By tracking
history, we know that df_movies is the parent and filt_df the
child. When an operation returns a new dataframe, this new object
inherits the history from its parent. However, subsequent operations
only affect either the parent or child, but not both. For example, the
column assignment at execution count 12 in Figure 2 only affects
the interest model of df_movies and the mean calculation in time
step 14 only affects filt_df. By tracking this data provenance, we
maintain references to data that would have been lost otherwise and
can create unique visualizations that use the data before and after
an operation is applied such as showing the background distribution
for filtered data.

3.1.1 Solas Tracks Common Pandas Analysis API Calls

To ensure coverage of commonly used Pandas functions, we
scanned the API documentation of Pandas and identified common
analysis functions that might be applied to a dataframe or series.
We additionally observed over 10 hours of online Pandas tutori-
als and analysis demonstration videos that showed how people use
the API for real-world analysis tasks. Overall, our tracked analysis
functions cover the most common analysis functions from previous
investigations of Pandas API usage [PMX∗20]. These operations
range from simple variable selections to complex filters, aggrega-
tions, and statistical functions. Operations for which we provide a
task-specific visualization are presented in Table 1. We also track
history for additional functions like df.head() or df.tail().
However, since these functions interact with all columns in a
dataframe, they do not provide us with additional information to
model user interest in specific columns. We do not track history
for table joins or operations that span multiple data tables since we
focus our recommendations on visualizing one dataframe (and its
history) at a time. Furthermore, joins result in a single dataframe
object that can be visualized.

3.2 Modeling Column Interest

Analysts’ interests shift over time as they explore their dataset. In
order to reflect this in our recommendations, we consider more re-
cent data interactions to be more important than older interactions.
At the start of an analysis, no history exists and thus all columns
are equally interesting. Over time we update our model of an ana-
lyst’s interest and provide recommendations tailored to their recent
analysis.

To accomplish this time-weighting in Solas, we use Jupyter’s ex-

Interest Ranking
 Worldwide_Gros
 Viewershi
 MPAA_Rating

Column Reference[10]

Interest Ranking: 1. Worldwide_Gross 2. Viewership 3. MPAA_Rating

Filter[11]

Interest Ranking
 Clas
 Worldwide_Gros
 Viewership

Column Assignment[12]

Interest Ranking:
 MPAA_Rating
 Worldwide_Gross
 Viewership

Aggregation[14]

Column Reference Interest Ranking
 Viewershi
 MPAA_Ratin
 Rotten_Tomatoes_Rating

[8]

Figure 2: The interest rankings demonstrate the model of column
interest at different steps during the analysis in Section 5. When
Viewership is referenced in time step 8, it has more interest than
other columns from earlier in the analysis. After the filter in [11],
filt_df inherits the history from df_movies and further com-
mands affect the models of each dataframe independently.

ecution count as a time index for each history item. Every time a
user executes a code cell, this execution count increases by one.
Each operation begins with an initial weight w0, that corresponds
to how much we value this operation in our history. Most opera-
tions begin with w0 = 1, with the exception of two operations. Col-
umn references begin with w0 = 0.5 and column assignments with
w0 = 2. We found that column references are extremely common
and happen in almost every single piece of analysis code. There-
fore, we begin column references with a weight of w0 = 0.5 to
reflect this weaker signal. Likewise, column assignments are rarer
and thus should be strongly valued. This is similar to the logic of
TF-IDF from natural language processing, where more common
words across documents are less interesting [Jon72]. Since column
references happen more frequently, they provide us with less signal
about a user’s interest.

To calculate our model of user interest in each column at a time-
step t, we begin by iterating through the items in the dataframe’s
history in reverse order and decay the weights according to an expo-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Epperson et al / Leveraging Analysis History for Improved In Situ Visualization Recommendation

nential decay function. This decay function allows us to prioritize
data interactions that occurred most recently in the overall execu-
tion count as well as within a single cell. The weight of a history
item that occurred at time t is wt = w0× 0.85n−t × 0.95line_num,
where w0 is the initial weight of the item, line_num is the within
cell index (starting at 0), and n is the total number of history
items. This involves two hyperparameters: decay between execu-
tion counts (i.e. in different cells), and decay between operations
that occur within the same cell. We use a value of 0.85 to decay
history between execution counts and 0.95 to decay history items
that occurred during the same execution count. After we decay the
history, we exclude operations with a decayed weight less than a
threshold of 0.25. This allows us to exclude older history items that
are likely no longer relevant. Users can customize all three of these
hyper-parameters (decay rates and exclusion threshold) through the
Solas API. These parameters primarily affect how long interactions
are considered for recommendation, and we found in practice that
the model’s column ranking is relatively stable across parameter
values. To produce a ranking of column interest, we sum across the
weighed history and sort so that columns with the most cumulative
weight are given the highest ranking. This prioritizes columns that
are referenced frequently and more recently.

Solas uses the model of column interest to visualize columns in
the most recent operation relative to columns of interest in the en-
hance tab and to sort other recommendation tabs. The column inter-
est ranking shown at each time step in Figure 2 demonstrates how
this history aggregation works in practice. In time step 14 (the green
box), the column interest model for filt_df ranks MPAA_Rating
most highly since it was referenced most recently, and the interest
in Worldwide_Gross has been decayed.

4 Visualization Recommendations from Analysis History

Once we have modeled column interest from analysis history, we
can use it to improve visualization recommendations in three ways.
First, we use the provenance afforded by history to provide task-
specific visualizations to visualize data from specific function calls
with appropriate encodings. Next, we use the model of column in-
terest to enhance the most recent operation’s visualization and sort
other recommendation tabs. Lastly, we use the operations that an
analyst applies to each column to improve type inference and pro-
vide better type-appropriate visualizations.

4.1 Improved Task Visualization

The most recent operation a user has applied to their data gives
us the strongest signal about their current interest. As described in
Section 3.2, the last operation gets the most weight in our model
of a user’s column interest. We also provide task-specific visual-
izations catered to the most recent operation in the Solas UI. To
encode a single operation, we provide visualizations that, in our
opinion, best communicate the task that the operation performs.
Each of the functions in Table 1 is encoded in a specific way that
best presents the task this function aims to accomplish. We chose
the task-specific encodings to reflect both common practice (e.g.
heatmaps for correlation matrices) as well as encodings that follow
best practices such as those synthesized in prior work [MWN∗19].

Our task-specific visualizations fall into two broad categories:
those that detect pre-aggregated data and those that use historical

Figure 3: By using analysis history, Solas better understands the
semantics of data. It knows the values returned from df.corr()

represent a correlation matrix and visualizes this data as a heatmap
to highlight columns with high or low correlation.

data from earlier in the analysis history. Many analysis functions
such as value counts return pre-aggregated data. Typical recom-
mendation systems are unaware of this provenance and treat these
aggregates as raw values, producing nonsensical visualizations. So-
las is aware of the function call that produced data to visualize to
avoid this pitfall. Other tasks, like filters, benefit from data that is
no longer in the current dataframe to give additional context. Some
of our encodings, such as for describe handle pre-aggregated data
and use historical data for outliers.

4.1.1 Detecting Pre-aggregated Data

Several analytic functions aggregate the raw data in various ways
and return the results. We use the semantics of the returned data to
visualize each function in a task-appropriate way.

Value Counts. The value counts function returns the count of
each unique value in a column of a dataframe. Existing visualiza-
tion recommendation systems will encode these counts as raw val-
ues; Solas knows that they represent category counts and encodes
the data as a bar chart.

Correlation. Calls to df.corr() return a correlation matrix.
Solas plots this data as a heatmap over correlations to make it easier
to spot columns with low or high correlation. Figure 3 shows a
Correlation matrix visualization for the Movies dataset discussed
in Section 5.

Null counts. There are several ways to check how many nulls
are in a column in Pandas including isna, isnull, and notnull.
Each of these functions returns a Boolean dataframe representing

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Epperson et al / Leveraging Analysis History for Improved In Situ Visualization Recommendation

if a value is null. We visualize this data as stacked bar charts show-
ing how many nulls are in each column to help analysts identify
columns with many (or few) null values.

4.1.2 Encoding Historical Data

In addition to understanding the semantics of data returned from
analysis functions, analysis history allows us to visualize historical
data that is no longer in the dataframe. Data from earlier in the
analysis lineage proves useful in a variety of analysis tasks from
providing overviews with outliers to adding context to filters.

Describe. The describe function returns statistical summaries
of each quantitative column in a dataframe such as the count,
mean, std, and quartiles. Since the goal of this function is to get
an overview of the column, we visualize the data in a boxplot to
communicate the distribution of the columns. The power of So-
las becomes evident here as the data returned by df.describe()

does not contain enough information to visualize a boxplot. In-
stead, Solas retrieves the parent dataframe (df) in order to plot
outliers in the data needed for the boxplot. Furthermore, the data
returned from df.describe(), like many analysis operations, is
pre-aggregated. Visualizing these aggregates as raw values by treat-
ing them as quantitative values results in nonsensical visualizations.
Yet without the history captured by Solas, a recommendation sys-
tem would be unaware this data is pre-aggregated. Figure 5A shows
our boxplot visualization of this function. Without analysis history,
visualizing outliers is not possible.

Filters. During data analysis, filtering is extremely com-
mon. In Pandas, users can accomplish the same filtering
task with the following three commands: df[df.Age > 30],
df.loc[df.Age > 30], df.query("Age > 30"). To better
understand a filter, it can be useful to plot how the returned data
compares to the original distributions. Filtering on one column
can sometimes have unexpected effects on the distribution of other
columns. In Solas, we support this comparison between the fil-
tered and original distribution by visualizing these two distribu-
tions as overlapping bars or histograms for each column. Users
can toggle the background distribution on or off to support fo-
cus on only the filtered data or to compare to the background.
Additionally, we sort the returned charts to prioritize distribu-
tions that shift the most after the filter is applied by calculat-
ing the earth mover’s distance between the two distributions in
the same approach as SeeDB [VRM∗15]. Sorting in this way al-
lows users to compare which distributions shift the most because
of the filter. Figure 5D shows an example filter visualization for
df_movies[df_movies.Worldwide_Gross > 1e8]. The first
visualization shows how many points remain in the data after the
filter is performed. The following visualizations show that the dis-
tribution of Worldwide_Gross shifted the most after filtering, fol-
lowed by US_Gross, Production_Budget, and so on.

Groupbys and aggregations with mean. When users perform
any type of aggregation on the mean, we augment the visual-
ization by plotting error bars with the standard deviation to pro-
vide additional context to the mean values. This reflects statisti-
cal best practices around plotting mean values. To compute the
error bars, Solas once again references the parent of the aggre-
gated data to calculate the standard deviation. Example func-
tion calls that elicit this visualization include both data aggre-

Operation Inferred level
=, 6= Nominal
<,≤,>,≥ Ordinal
+,− Interval
∗,/,//,%,∗∗ Ratio

Aggregation Inferred level
min, max, median Ordinal
mean, sum Interval
prod, std, var, sem, skew Ratio

Table 2: When column operations and aggregations are applied to
the data, the measurement level type is updated if the new level is
more restrictive.

gations that calculate the mean for any quantitative column in
the data (e.g. df.mean()) as well as groupbys with mean (e.g.
df.groupby("A").agg({"B":"mean"})).

For any groupby aggregation, we also update the x-axis name
to include the aggregation so that users know how their data was
aggregated in the plot. Figure 5C shows an example groupby
where Rotten_Tomatoes_Rating is aggregated by its mean. So-
las shows error bars for these groups, allowing users to understand
the standard deviation in addition to the mean, without having to
write any extra code.

4.2 Using Column Interest Model

Solas uses the model of column interest described in Section 3.2 in
two ways. First, high interest columns are compared in the enhance
tab. As the most recent operation has the highest interest, this tab
shows visualizations comparing columns in the most recent opera-
tion to other recently interacted columns. Second, the recommen-
dations in the other tabs are sorted according to this interest model.
Particularly as datasets grow wide, there are many possible visual-
izations that can be shown to visualize univariate and bivariate dis-
tributions. Therefore ranking visualizations becomes increasingly
important to show users visualizations that correspond to columns
they care about. We group our recommended visualizations into
the same task groups as Lux, including tabs for Correlation show-
ing scatterplots and Distribution showing histograms. However, we
sort the visualizations in each of these tabs by the column ordering
provided by our model. Solas thereby shows visualizations most
relevant to a user’s recent interactions at the front, reducing the
time needed to scroll to find relevant charts.

Figure 1 demonstrates this sorting after several analysis steps.
Since our analyst has most recently interacted with the Class vari-
able it is shown on the left-hand side of Solas’s UI. Next, Solas
shows Class relative to Worldwide_Gross, MPAA_Rating, and
Running_Time_min since these columns were also interacted with
during the analysis in decreasing order of inferred interest. Other
tabs such as Correlation, Distribution, Occurrence, and Temporal
use this same ordering to present the most relevant visualizations
to the user first.

4.3 Operational Type Inference

The last way that we use history to improve recommendation is by
using the operations that an analyst applies to each column to do
better measurement type inference. Measurement types refer to the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Epperson et al / Leveraging Analysis History for Improved In Situ Visualization Recommendation

meaning of a column such as nominal, ordinal, interval, and ratio
variables as opposed to data types such as int or float.

Type inference in Solas happens in two stages. First, we infer
types with traditional methods based on dataset statistics and data
types. Next, we update these default measurement type inferences
based on the operations a user applies to each column. With bet-
ter types for each column, we are able to visualize data with more
appropriate encodings. We infer types for levels of measurement
based on the operations supported by each level. Nominal vari-
ables only support equality, ordinal variables also support compar-
ison, interval variables support addition and subtraction, and ra-
tio variables also support multiplication and division [Ste46]. Each
“higher” level supports all operations below. When we see an op-
eration applied to a column, we know that the column must be at
least of that level. Table 2 shows Python operators and their cor-
responding level of measurement that we use for type inference.
For simplicity in Solas, we visualize variables as either nominal
or quantitative and therefore group nominal and ordinal inferences
into nominal and interval and ratio into quantitative.

Figure 4 demonstrates how we can update the type of a variable
from interactions and how this affects recommended visualizations.
In this example, the Viewership column is inferred as nominal by
default since it has a low cardinality. However, once a multiplica-
tion operation is applied to the column, we learn this column must
be quantitative in order to support multiplication. This type update
changes the univariate visualization of Viewership from a bar
chart to a binned histogram, and changes how Viewership is vi-
sualized in bivariate distributions as well. These type updates only
go up the levels. Therefore if a column is inferred to be quantitative
by default and we execute df.col == 45, we will not change the
type to nominal since quantitative columns also support equality.

In addition to mathematical operators, we also learn type infor-
mation from the aggregation functions presented in Table 2. The
levels in each of these aggregation functions correspond to the oper-
ations required to carry out that functionality. For instance, median
only requires greater than or less than comparisons so lets us learn
ordinal information, whereas calculating the product (with prod)
of a column requires multiplication and thus tells us this column
should be Ratio typed.

There is one exception to the rule of only going up the levels of
measurement. When a user groups by a column, we infer this col-
umn to be nominal. We use this as a heuristic since it does not make
sense to group by a quantitative column (without binning) and so
any column that is used to group should be nominal. With any of
these type inferences, there is the possibility that we will update a
column’s type erroneously. Users are able to override inferred types
manually though the Solas API by using df.set_data_type().

4.4 Interacting with History

In Solas, all of the history tracking and recommendation happens
under the hood. However, we support interactions for users to
browse the history of operations that occurred on a dataframe (or
its ancestors) to better understand the past operations and visual-
ize them. When a user clicks on a previous step in the analysis, we
show them the visualizations for this specific task. Additionally,

Figure 4: Viewership initially represents the count of viewers in 10
millions. Since it has low cardinality, it is visualized as a nominal
variable. However, when we re-scale the column by multiplying by
10 million, Solas infers that Viewership must be a quantitative col-
umn that supports multiplication and visualizes accordingly.

users can delete history items if they do not want them to influence
their recommendations.

5 Usage Scenario

To demonstrate the use of Solas, we describe an example analy-
sis scenario where an analyst uses the system to explore a movies
dataset to create a model for predicting movie revenue. The dataset
contains columns such as the movie title, revenue, rating, view-
ership, etc. This example demonstrates many features enabled by
collecting and reasoning about analysis history.

To begin her analysis, our analyst loads the CSV file with Pan-
das into her Jupyter notebook and calls df. Her dataset contains
3,201 rows and 17 columns. By default, Solas shows four different
groups of visualizations: correlation, distribution, occurrence, and
temporal. Once she begins exploring, Solas will be able to use her
history to suggest even more visualizations.

5.1 Supporting Analysis with Task-Specific Visualizations

To get an overview of her data, she calls
df_movies.describe(). There are initially eight quantita-
tive columns in the dataset, and the describe function returns
summary statistics for each column. To visualize this data, Solas
plots each of these eight columns as a boxplot (Figure 5A).
Looking at the plots, she notices many high-range outliers on the
US_DVD_Sales, Worldwide_Gross, and US_Gross columns. By

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Epperson et al / Leveraging Analysis History for Improved In Situ Visualization Recommendation

A C

D
B

Figure 5: Solas tracks history throughout an analysis to provide improved visualizations. We show four snapshots from an example analysis
that demonstrate the recommendations from Solas. (A) When an analyst calls describe, we visualize the returned data as a boxplot by using
information that is no longer present in the returned data to plot outliers. (B) After cleaning their data by dropping columns and nulls, Solas
shows how the distribution of other columns change. (C) For groupbys and aggregations, we use history information to add better x-axis
labels and include error bars when plotting the mean. (D) When filtering, Solas shows the background distribution of each column from the
parent data relative to the filtered data. Users can toggle the background distribution on and off.

using data from the parent dataframe, df, to plot these outliers,
Solas is able to provide a visualization that best caters to the
overview task of describe.

Next, our analyst checks if she needs to clean any columns. She
calls df_movies.isna() and looks at the bar charts to see which
columns have nulls in them. Most columns have no or very few
nulls; however, the US_DVD_Sales column is almost all null. She
decides to drop this column. Additionally, she filters to only keep
non-null rows for MPAA_Rating, as she is potentially interested in
including this column in her model. MPAA_Rating corresponds to
movie ratings like PG-13 or R. Solas visualizes the returned data as
a filter so our analyst can inspect how the dropna operation affects
the distribution of other columns (Figure 5B).

Next, our analyst looks to explore how metrics in the
dataset differ across MPAA_Rating to see if this col-
umn will be helpful for modeling later. First, she calls
df_movies["MPAA_Rating"].value_counts() to understand
the distribution. Solas knows the data returned is pre-aggregated
and plots the results in a bar chart. Most movies in this dataset are
rated R, followed by PG-13. She then groups by MPAA_Rating

and aggregates several other columns. Since her earlier explo-
ration revealed the skewed distribution of the US_Gross and
Worldwide_Gross columns, she aggregates them by their

median across MPAA_Rating. She also calculates the mean of
Rotten_Tomatoes_Rating and Running_Time_min. When
visualizing these results, Solas automatically includes error bars
for the mean calculations to give more context (Figure 5C). Our
analyst notices that the Rotten_Tomatoes_Rating has similar
standard deviations across ratings, except for the Open category,
which has a much smaller standard deviation on the visualization.

5.2 Improving Visualizations with Type Inference Updates

To continue transforming her dataset, the analyst inspects the
Viewership column (Figure 4 Top). Since this column has low
cardinality, Solas initially infers the type to be nominal. However,
the analyst knows that this column represents the viewership in
units of 10 million, so she multiplies the column by 10 million
to get the raw viewership count. After this operation, Solas has
evidence that Viewership is a quantitative column and updates
the type and visualizations accordingly (Figure 4 Bottom). This
operation-based type update would not be possible without tracking
and reasoning about analysis history.

5.3 Surfacing Visualizations with Column Interest Model

Our analyst turns her analysis towards the Worldwide_Gross col-
umn, since she will be using this column for predictions. Her ear-
lier analysis suggested this column is right skewed, and has a

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Epperson et al / Leveraging Analysis History for Improved In Situ Visualization Recommendation

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Groupby

Null

Filter

Describe

Percentage of Survey Respondents Preferring Solas

p value

1.97e-9 **

2.47e-7 **

6.64e-3 **

0.24

2.68e-4 **

Corr

LuxSolas

79

76

64

56

31

Figure 6: Survey participants (N=87) significantly preferred So-
las’s encodings for describe, corr, and groupby. For isNull,
they found either encoding equally acceptable. For filter, par-
ticipants significantly preferred the Lux encoding and are given the
option to toggle the background distribution on and off in Solas. P
values marked with (**) are below 0.05 and considered significant.

large number of high-value outliers as shown in the boxplot for
describe. Still, she wants to recheck the distribution again to
confirm. She simply references this column in a cell by typing
df_movies.Worldwide_Gross and Solas plots both the distri-
bution of this column as well as Worldwide_Gross relative to
other columns in the dataset. Solas sorts these visualizations so
that columns she has recently interacted with appear first such
Viewership or MPAA_Rating (as reflected by the ranking at exe-
cution count [10] in Figure 2).

After looking at the histogram, she creates a predictive model for
high-grossing movies. She applies a filter to Worldwide_Gross,
and Solas shows how this filtered data compares to the unfiltered
set (Figure 5D). She can toggle the background distribution on and
off to inspect more closely the returned data with or without this
additional context. Once again, this background context would be
impossible without Solas’s history of her analysis. She iterates on
her filter and decides on a value of $100M for her threshold since
the Solas filter plots revealed that about a quarter of movies earn
more than this much. Our analyst then creates a new binary variable
called Class for whether or not a movie makes more than $100M.
She will be using this variable as the prediction target for a bi-
nary classifier. She visualizes her data once again by displaying the
dataframe with a call to df_movies (Figure 1). Since she has most
recently created the Class variable, this action is highlighted in
Solas and a bar chart for Class is shown. Furthermore, by looking
at the enhance tab, she can see Class relative to other variables in
the dataset. These recommendations are sorted by variables she has
interacted with recently so Class vs Worldwide_Gross is shown
first followed by Class vs Viewership and so on.

Finally, our analyst calls df.corr() to see how the other
columns in her data are correlated with her new Class column
(Figure 3). She notices several features have a strong correla-
tion with the Class such as US_Gross. In contrast, others like
IMDB_Rating have a weaker correlation, so they likely provide
less predictive value. With this, our analyst is happy with her data
exploration and is ready to begin modeling. By using Solas, she was
able to spend less time thinking about how to visualize her data and
more time focusing on the insights of her analysis.

6 Evaluation

To evaluate how well Solas suggests visualizations that users find
helpful on real-world tasks, we ran a survey to assess if users pre-
ferred the task-specific encodings provided by Solas versus the de-
fault encodings shown in Lux. We use Lux as an example of vi-
sualizations that will be presented by a state-of-the-art recommen-
dation tool that does not use history. Our evaluation demonstrates
the value of incorporating analysis history into visualization recom-
mendation as Solas suggests preferred encodings for several tasks.
We chose to evaluate the task-specific encodings since they were
most easily assessed by crowd workers and do not require an en-
tire analysis context to be useful; we demonstrate the utility of our
model of column interest in Section 5.

We recruited 87 participants from the crowd-working site Pro-
lific who attested to having some experience working with Python
and the Pandas library. For participants to be eligible, they were re-
quired to correctly answer at least one quiz question assessing their
familiarity with the Pandas API.

Participants were introduced to an example analysis task ana-
lyzing data about athletes from the 2016 Summer Olympics. This
dataset has 13,688 rows and 14 columns, such as the athlete’s
height, weight, age, country, sport, and whether or not they won a
medal. The survey was split into five sections where participants
were shown a function call for the describe, corr, groupby,
isNull, or filter tasks along with a preview of the data returned
from this function. Participants were asked which of two recom-
mendations they preferred for this data: the Solas task-specific en-
coding, or the default Lux encoding that did not leverage analysis
history. The ordering of the visualization choices was randomized.

Participants’ preferences are summarized in Figure 6. We con-
ducted t-tests to assess if the fraction of responses was signifi-
cantly different than 0.5 (which would indicate no preference). For
describe, corr, and groupby participants significantly preferred
the Solas encodings. For describe, participants preferred how So-
las’s boxplot matched the descriptive statistics: “[Solas] actually
shows a distribution to the descriptive statistics, so we can see if
there’s any skew/outliers/etc.” (P30). Interestingly, for describe
Lux re-aggregates the data and presents a misleading histogram that
assumes the data is a normal quantitative column. However, 21%
of participants still preferred the histogram since it “Just seems eas-
ier to analyze and see” (P26). This underscores the importance of
communicating data with appropriate encodings since users will
interpret the chart even if it is visualizing irrelevant data.

Participants preferred the correlation matrix shown by Solas be-
cause they found the heat map “helps to see trends where they
might not be obvious” (P64) and found it “Cleaner to have it in
a single visualization, and the correlation matrix makes it easier to
compare values ” (P67). The correlation matrix has higher infor-
mation density; most users prefer having the data communicated
in a single visualization with higher information density. However,
others still preferred bar charts showing the correlations relative
to a single variable since they found it “easier and faster to read”
(P27). The groupby visualizations were very similar except Solas’s
included error bars for mean charts and more descriptive axis la-
bels. As indicated in survey responses, many participants preferred
these subtle differences.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Epperson et al / Leveraging Analysis History for Improved In Situ Visualization Recommendation

For the isNull task, users were ambivalent about which encod-
ing they preferred with a non-significant difference in preferences.
The Solas visualizations are subtly different than those provided
by Lux. Solas visualizes the data as a stacked bar for each col-
umn showing the amount of null values; Lux shows a bar chart of
the sum of True and False values. Participants preferring Solas re-
marked “if the context is apparent, why use true or false? In [Solas]
we know the emphasis is on the number of missing records” (P93).
However, others preferred Lux’s encoding since it is more faithful
to the data rather than the task at hand, “I think it’s more clear in
[Lux] approximately how many True/False nulls there are, while
[Solas] is a relative comparison” (P30).

Finally, for the filter task, users were shown data from a filter
that selected only athletes who participated in the Athletics event at
the Olympics. Participants significantly preferred the Lux filter en-
coding to the Solas encoding that showed the results relative to the
background distribution. In the actual Solas system, users can tog-
gle the background distribution on and off so users can view both
of these encodings. Users that preferred Solas claimed “This chart
shows me how much the Athletics population is part of the over-
all population and their metrics as compared to others. Really cool
chart” (P60). However, most participants found the extra context
unhelpful: “I think it’s better to focus on the extracted data rather
than have it being compared to the entirety of the dataset” (P13).
Future investigations might explore when this additional context is
most helpful. By supporting toggling the background distribution
on and off, we believe the design of Solas addresses many of the
concerns from participants.

7 Discussion & Limitations

Solas demonstrates how history-based visualization recommenda-
tions can improve the experience of users as they iterate during ex-
ploratory data analysis. We believe that integrating history tracking
into other visualization tools can provide similar benefits. Even in
tools where users are not writing code, they still take actions simi-
lar to those accomplished through Pandas for Solas such as looking
at an overview of their dataset, applying filters, and aggregating.
Future work can use the same task-specific visualizations from So-
las from history tracking and recommend in other settings such as
no-code tools or other programming languages such as SQL or R.

Our paper is subject to several limitations. As a system, Solas
currently only tracks history for Pandas dataframes and works in
Jupyter (or similar) notebooks. However, we believe the ideas of
using analysis history tracking to augment visualization recommen-
dation are applicable beyond Python and Pandas programming. Our
evaluation focuses on how crowd workers successfully understand
Solas’s task-specific visualizations. However, further studies might
explore how systems augmented with history tracking like Solas
help analysts explore their data on more in-depth analysis tasks.

7.1 Preventing Erroneous Findings

In building and evaluating Solas, we noticed trends around how
users interact with their data and analysis histories. During our
evaluation, some users still preferred the poor encoding of the ag-
gregated data even though the chart communicated false findings
such as re-aggregating pre-aggregated data into a histogram. By
ensuring proper task-specific visualizations, Solas can help make

sure that data analysts engage with their data truthfully and are not
led astray by poor encoding. This finding echoes similar research
from the XAI community about how users trust interpretability vi-
sualizations of a machine learning model even if the results are
false [KNJ∗20].

7.2 Next Step Recommendation

Once we have detailed information about an analyst’s steps during
their data exploration, we can use this information beyond visu-
alization recommendation. By aggregating across multiple analy-
ses, we can begin to recommend potential next steps during rec-
ommendation with accompanying visualizations. Existing work in
this area typically mines Jupyter notebooks found on Github to un-
derstand how users go about their analysis [RCK∗21,YH20], how-
ever, notebooks found on Github are often incomplete, or do not
run [RTH18]. Furthermore, they do not represent the full breadth of
analysis since only one snapshot is uploaded that may not contain
previous analysis paths that have been deleted from the notebook.
By using Solas, we can track detailed information about the full
breadth of a user’s analysis and use this data to provide improved
next step recommendations.

7.3 Capturing Interest Across Multiple Analyses

In addition to next step recommendations, we can use aggregated
analysis histories to better understand how analysts typically inter-
act with a particular data source. Many teams interact with (ver-
sions of) a remotely stored data source. Each of these analyses can
be tracked through Solas to build a model of how users interact
with that data across analyses. When a user begins a new analy-
sis, we can help them bootstrap their exploration by demonstrating
how people typically explore or interact with that data source. We
could even develop analysis templates based on common practices
for single data sources or within a domain.

8 Conclusion

We present Solas, a visualization recommendation tool that uses
analysis history to improve recommendations. By understanding
the context and provenance of analysis, history-based recommen-
dations provide improvements including task-specific visualiza-
tions, sorting visualizations by column interest, and operation-
based type inference. In our user evaluation, participants engaged
with the task-specific visualizations and found them helpful for un-
derstanding their data. Our use case demonstrates the utility of our
column interest model. Finally, we discuss how history-based rec-
ommendations might be used in other contexts beyond notebook
programming.

9 Acknowledgements

We would like to thank Marti Hearst, Venkat Sivaraman, and Alex
Cabrera, along with our anonymous reviewers for their feedback
on this work. This work was supported by a grant from Apple, Inc.
Any views, opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and should
not be interpreted as reflecting the views, policies or position, either
expressed or implied, of Apple Inc.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Epperson et al / Leveraging Analysis History for Improved In Situ Visualization Recommendation

References
[80820] 8080 LABS: bamboolib. https://bamboolib.
8080labs.com/, 2020. 2

[ada] ADAMEROSE: PandasGUI. https://github.com/
adamerose/pandasgui. 2

[AGG∗15] ALIGON J., GALLINUCCI E., GOLFARELLI M., MARCEL P.,
RIZZI S.: A collaborative filtering approach for recommending olap
sessions. Decis. Support Syst. 69, C (jan 2015). doi:10.1016/j.
dss.2014.11.003. 2

[DHPP17] DEMIRALP C., HAAS P. J., PARTHASARATHY S., PEDAPATI
T.: Foresight: Recommending visual insights. Proc. VLDB Endow. 10,
12 (aug 2017). doi:10.14778/3137765.3137813. 3

[Fbd] FBDESIGNPRO: sweetviz. https://github.com/
fbdesignpro/sweetviz. 2

[GW09] GOTZ D., WEN Z.: Behavior-driven visualization recommenda-
tion. In Proceedings of the 14th International Conference on Intelligent
User Interfaces (New York, NY, USA, 2009), IUI ’09, Association for
Computing Machinery. doi:10.1145/1502650.1502695. 3

[Hee19] HEER J.: Agency plus automation: Designing artificial intelli-
gence into interactive systems. Proceedings of the National Academy of
Sciences 116 (2019). doi:10.1073/pnas.1807184115. 2

[HMSA08] HEER J., MACKINLAY J., STOLTE C., AGRAWALA M.:
Graphical histories for visualization: Supporting analysis, communica-
tion, and evaluation. IEEE Transactions on Visualization and Computer
Graphics 14, 6 (2008). doi:10.1109/TVCG.2008.137. 2

[Jon72] JONES K. S.: A statistical interpretation of term specificity and
its application in retrieval. Journal of Documentation 28 (1972). doi:
10.1108/eb026526. 4

[KHM17] KERY M. B., HORVATH A., MYERS B. A.: Variolite: Sup-
porting exploratory programming by data scientists. Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (2017).
doi:10.1145/3025453.3025626. 2

[KM18] KERY M. B., MYERS B. A.: Interactions for untangling messy
history in a computational notebook. In 2018 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC) (2018),
IEEE. doi:10.1109/VLHCC.2018.8506576. 2

[KNJ∗20] KAUR H., NORI H., JENKINS S., CARUANA R., WALLACH
H., WORTMAN VAUGHAN J.: Interpreting interpretability: Under-
standing data scientists’ use of interpretability tools for machine learn-
ing. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems (2020), CHI ’20, Association for Computing Ma-
chinery. doi:10.1145/3313831.3376219. 10

[KRA∗18] KERY M. B., RADENSKY M., ARYA M., JOHN B. E., MY-
ERS B. A.: The Story in the Notebook: Exploratory Data Science Using
a Literate Programming Tool. Association for Computing Machinery,
New York, NY, USA, 2018. doi:10.1145/3173574.3173748. 2

[LTA∗22] LEE D. J. L., TANG D., AGARWAL K., BOONMARK T.,
CHEN C., KANG J., MUKHOPADHYAY U., SONG J., YONG M.,
HEARST M. A., PARAMESWARAN A. G.: Lux: Always-on visual-
ization recommendations for exploratory data science. VLDB (2022).
doi:10.14778/3494124.3494151. 2, 3

[Mac86] MACKINLAY J.: Automating the design of graphical presen-
tations of relational information. ACM Trans. Graph. 5, 2 (apr 1986).
doi:10.1145/22949.22950. 3

[MHS07] MACKINLAY J., HANRAHAN P., STOLTE C.: Show me:
Automatic presentation for visual analysis. IEEE Transactions on
Visualization and Computer Graphics 13, 6 (2007). doi:10.1109/
TVCG.2007.70594. 3

[MWN∗19] MORITZ D., WANG C., NELSON G. L., LIN H., SMITH
A. M., HOWE B., HEER J.: Formalizing visualization design knowl-
edge as constraints: Actionable and extensible models in draco. IEEE
Transactions on Visualization and Computer Graphics 25, 1 (2019).
doi:10.1109/TVCG.2018.2865240. 3, 5

[Pan] PANDAS: Pandas: Python data analysis library. URL: https:
//pandas.pydata.org. 3

[Per18] PERKEL J. M.: Why jupyter is data scientists’ computational
notebook of choice, Oct 2018. URL: https://www.nature.com/
articles/d41586-018-07196-1. 3

[PMX∗20] PETERSOHN D., MACKE S., XIN D., MA W., LEE D.,
MO X., GONZALEZ J. E., HELLERSTEIN J. M., JOSEPH A. D.,
PARAMESWARAN A.: Towards scalable dataframe systems. Proc.
VLDB Endow. 13, 12 (jul 2020). doi:10.14778/3407790.
3407807. 4

[PP] PANDAS-PROFILING: pandas-profiling. https://github.
com/pandas-profiling/pandas-profiling. 2

[RCK∗21] RAGHUNANDAN D., CUI Z., KRISHNAN K., TIRFE S., SHI
S., SHRESTHA T. D., BATTLE L., ELMQVIST N.: Lodestar: Support-
ing independent learning and rapid experimentation through data-driven
analysis recommendations. Proceedings of the 2021 IEEE Conference
on Visualization and Visual Analytics (2021). 2, 10

[RTH18] RULE A., TABARD A., HOLLAN J. D.: Exploration and
Explanation in Computational Notebooks. Association for Computing
Machinery, New York, NY, USA, 2018. doi:10.1145/3173574.
3173606. 10

[sd] SFU DB: dataprep. https://github.com/sfu-db/
dataprep. 2

[SKL∗16] SIDDIQUI T., KIM A., LEE J., KARAHALIOS K.,
PARAMESWARAN A.: Effortless data exploration with zenvisage:
An expressive and interactive visual analytics system. Proc. VLDB
Endow. 10, 4 (nov 2016). doi:10.14778/3025111.3025126. 3

[Ste46] STEVENS S. S.: On the theory of scales of measurement. Science
103, 2684 (1946). doi:10.1126/science.103.2684.677. 7

[VRM∗15] VARTAK M., RAHMAN S., MADDEN S., PARAMESWARAN
A., POLYZOTIS N.: Seedb: Efficient data-driven visualization recom-
mendations to support visual analytics. Proc. VLDB Endow. 8, 13 (sep
2015). doi:10.14778/2831360.2831371. 3, 6

[WDBD21] WEINMAN N., DRUCKER S. M., BARIK T., DELINE
R.: Fork it: Supporting stateful alternatives in computational note-
books. Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems (2021). doi:10.1145/3411764.3445527. 2

[WHS20] WU Y., HELLERSTEIN J. M., SATYANARAYAN A.: B2:
Bridging Code and Interactive Visualization in Computational
Notebooks. Association for Computing Machinery, New York,
NY, USA, 2020. doi:10.1145/3379337.3415851. 2

[WMA∗16a] WONGSUPHASAWAT K., MORITZ D., ANAND A.,
MACKINLAY J., HOWE B., HEER J.: Towards a general-purpose
query language for visualization recommendation. In ACM SIGMOD
Human-in-the-Loop Data Analysis (HILDA) (2016). doi:10.1145/
2939502.2939506. 3

[WMA∗16b] WONGSUPHASAWAT K., MORITZ D., ANAND A.,
MACKINLAY J., HOWE B., HEER J.: Voyager: Exploratory analysis
via faceted browsing of visualization recommendations. IEEE Trans.
Visualization & Comp. Graphics (Proc. InfoVis) (2016). doi:10.
1109/TVCG.2015.2467191. 3

[WQM∗17] WONGSUPHASAWAT K., QU Z., MORITZ D., CHANG R.,
OUK F., ANAND A., MACKINLAY J., HOWE B., HEER J.: Voyager
2: Augmenting visual analysis with partial view specifications. In ACM
Human Factors in Computing Systems (CHI) (2017). doi:10.1145/
3025453.3025768. 3

[XOW∗20] XU K., OTTLEY A., WALCHSHOFER C., STREIT M.,
CHANG R., WENSKOVITCH J. E.: Survey on the analysis of user in-
teractions and visualization provenance. Computer Graphics Forum 39
(2020). doi:10.1111/cgf.14035. 2

[YH20] YAN C., HE Y.: Auto-suggest: Learning-to-recommend data
preparation steps using data science notebooks. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data
(2020), pp. 1539–1554. doi:10.1145/3318464.3389738. 2, 10

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://bamboolib.8080labs.com/
https://bamboolib.8080labs.com/
https://github.com/adamerose/pandasgui
https://github.com/adamerose/pandasgui
https://doi.org/10.1016/j.dss.2014.11.003
https://doi.org/10.1016/j.dss.2014.11.003
https://doi.org/10.14778/3137765.3137813
https://github.com/fbdesignpro/sweetviz
https://github.com/fbdesignpro/sweetviz
https://doi.org/10.1145/1502650.1502695
https://doi.org/10.1073/pnas.1807184115
https://doi.org/10.1109/TVCG.2008.137
https://doi.org/10.1108/eb026526
https://doi.org/10.1108/eb026526
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1109/VLHCC.2018.8506576
https://doi.org/10.1145/3313831.3376219
https://doi.org/10.1145/3173574.3173748
https://doi.org/10.14778/3494124.3494151
https://doi.org/10.1145/22949.22950
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2007.70594
https://doi.org/10.1109/TVCG.2018.2865240
https://pandas.pydata.org
https://pandas.pydata.org
https://www.nature.com/articles/d41586-018-07196-1
https://www.nature.com/articles/d41586-018-07196-1
https://doi.org/10.14778/3407790.3407807
https://doi.org/10.14778/3407790.3407807
https://github.com/pandas-profiling/pandas-profiling
https://github.com/pandas-profiling/pandas-profiling
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://github.com/sfu-db/dataprep
https://github.com/sfu-db/dataprep
https://doi.org/10.14778/3025111.3025126
https://doi.org/10.1126/science.103.2684.677
https://doi.org/10.14778/2831360.2831371
https://doi.org/10.1145/3411764.3445527
https://doi.org/10.1145/3379337.3415851
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1145/2939502.2939506
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1111/cgf.14035
https://doi.org/10.1145/3318464.3389738

