Interactive Debugging and Steering of Multi-Agent Al Systems

Will Epperson
willepp@cmu.edu
Human-Computer Interaction
Institute
Carnegie Mellon University
Pittsburgh, PA, USA

Adam Fourney
adam.fourney@microsoft.com
Microsoft Research
Redmond, WA, USA

Gagan Bansal
gaganbansal@microsoft.com
Microsoft Research
Redmond, WA, USA

Jack Gerrits
jagerrit@microsoft.com
Microsoft Research
Redmond, WA, USA

Victor Dibia
victordibia@microsoft.com
Microsoft Research
Redmond, WA, USA

Erkang Zhu
erkang.zhu@microsoft.com
Microsoft Research
Redmond, WA, USA

Saleema Amershi
samershi@microsoft.com
Microsoft Research
Redmond, WA, USA

Tool: browsing the web

Tool: browsing the web

Tool: writing code

10
'IL € € €

X Wrong output!

2

Correct output!

Figure 1: Debugging multi-agent Al systems involves reasoning over long multi-turn conversations where specialized agents use
tools like web browsing and writing code with LLMs. AGDEBUGGER allows users to interactively debug and steer multi-agent
teams by resetting the agents to earlier points in the workflow then editing messages to interactively test hypotheses about

their behavior.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CHI ’25, Yokohama, Japan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1394-1/25/04

https://doi.org/10.1145/3706598.3713581

Abstract

Fully autonomous teams of LLM-powered Al agents are emerging
that collaborate to perform complex tasks for users. What chal-
lenges do developers face when trying to build and debug these Al
agent teams? In formative interviews with five Al agent develop-
ers, we identify core challenges: difficulty reviewing long agent
conversations to localize errors, lack of support in current tools

https://orcid.org/0000-0002-2745-4315
https://orcid.org/0000-0002-7741-3861
https://orcid.org/0000-0002-1839-5632
https://orcid.org/0000-0002-4986-7794
https://orcid.org/0009-0003-1966-2434
https://orcid.org/0009-0000-3326-1790
https://orcid.org/0000-0002-3294-7288
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3706598.3713581

CHI *25, April 26-May 1, 2025, Yokohama, Japan

for interactive debugging, and the need for tool support to iterate
on agent configuration. Based on these needs, we developed an
interactive multi-agent debugging tool, AGDEBUGGER, with a Ul
for browsing and sending messages, the ability to edit and reset
prior agent messages, and an overview visualization for navigating
complex message histories. In a two-part user study with 14 partic-
ipants, we identify common user strategies for steering agents and
highlight the importance of interactive message resets for debug-
ging. Our studies deepen understanding of interfaces for debugging
increasingly important agentic workflows.

CCS Concepts

« Human-centered computing — Interactive systems and
tools; « Computing methodologies — Multi-agent systems.

Keywords

Al agents, ai debugging, interactive debugging systems, language
models

ACM Reference Format:

Will Epperson, Gagan Bansal, Victor Dibia, Adam Fourney, Jack Gerrits,
Erkang Zhu, and Saleema Amershi. 2025. Interactive Debugging and Steer-
ing of Multi-Agent Al Systems. In CHI Conference on Human Factors in
Computing Systems (CHI °25), April 26-May 1, 2025, Yokohama, Japan. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3706598.3713581

1 Introduction

Multi-agent Al systems are emerging as a powerful paradigm for
addressing tasks beyond the scope of single large language models
(LLMs) [9, 22, 43, 47]. By combining LLMs with multi-turn state
tracking, external tool use, and collaborative interactions, multi-
agent systems can perform complex, real-world tasks such as ac-
cessing up-to-date information or executing actions in dynamic
environments [15]. This capability has allowed multi-agent Al sys-
tems to excel in challenging benchmarks that require reasoning
about complex tasks and using tools to interact with the world like
web browsing [15], reasoning over complex files [27], and writing
and executing code [17, 41].

Despite these advances, existing Al development tools fall short
when it comes to understanding and debugging the complex, multi-
turn behaviors of agent teams. Traditional Al debugging practices,
which focus on model training or correcting datasets, are inadequate
in this new paradigm. Much of the work in debugging LLM systems
centers around crafting effective text prompts that instruct the LLM
how to accomplish a task through in-context learning [5, 48]. Prior
research has developed tools for crafting effective prompts for tasks
involving individual LLM invocations [16, 29, 32, 39] or chains of
LLM calls [3, 44], but has not addressed the challenges associated
with debugging teams of fully-autonomous Al agents.

Debugging multi-agent teams introduces new debugging chal-
lenges since agent teams require first crafting individual prompts
and tools for each agent, then understanding how the team works
together to accomplish a task by making numerous LLM calls over
a multi-turn conversation. Agent conversations are complex and
dynamic, where agents formulate a plan on the fly for a task and
then execute the plan by using tools to interact with the world

Epperson et al.

as needed [9, 43]. Debugging multi-agent systems requires simul-
taneously understanding both the individual behaviors of agents
and the emergent interactions between them. This multifaceted
debugging challenge demands new tools that can integrate insight
across the entire agent team to avoid “cascading errors” that fix one
component while breaking another [28, 36, 44].

While recent systems like AutoGen Studio [10] and OpenDevin [41]
enable developers to interact with multi-agent Al teams, they pri-
marily focus on task execution and agent construction. These plat-
forms lack robust debugging features, particularly for multi-turn
interactions. As agent conversations grow longer, existing tools do
not provide the ability to pause, rewind, or edit agent behaviors in
real time. Additionally, they lack comprehensive visualizations to
help developers track and understand the evolving dynamics be-
tween agents. These gaps in literature makes debugging multi-agent
systems particularly challenging, as developers need to iteratively
diagnose and adjust interactions across the team.

To address the limitations of current tools and better support the
debugging of multi-agent Al systems, we explore two key research
questions: (1) How can we design systems that enable developers to
effectively debug multi-agent Al teams? (2) How do developers use
such a system to debug and improve agent workflows in practice?

To investigate these research questions, we first conducted for-
mative interviews with five expert developers who have extensive
experience building multi-agent Al systems. These interviews re-
vealed several key challenges in the debugging process, such as
difficulties in understanding long, multi-turn agent conversations,
the lack of interactive debugging support in existing tools, and the
need for better tooling to iterate on agent configurations.

Using these findings, we designed an interactive debugging sys-
tem, AGDEBUGGER to address these challenges. AGDEBUGGER has
three primary features to facilitate the debugging process. The first
builds off prior interfaces for agent configuration [10, 21, 41] and
allows users to interactively send messages to the agents and in-
spect the history of messages sent with fine-grained control on
the execution of messages. An extension to chatting with agents is
the ability to interactively control a conversation by resetting to
previous points and editing previously sent agent messages. AGDE-
BUGGER enables such an interaction by check-pointing agent state
(including state that might be impacted by agent actions and tool
use) before each message is sent to enable resetting to earlier points
in a conversation and editing agent messages. Finally, as agent
conversations grow longer and users edit the conversation his-
tory they can become difficult to track. AGDEBUGGER also includes
an interactive overview visualization for summarizing the agent
conversations and edits.

We conducted a two-part user study with 14 participants to
evaluate the effectiveness of AGDEBUGGER for debugging multi-
agent workflows. In the first part, participants diagnosed errors
in agent workflows by using AGDEBUGGER to inspect and under-
stand where the agents failed. In the second part, they used AGDE-
BUGGER to edit agent messages and steer the agents toward suc-
cessful outcomes. Our findings reveal that participants frequently
made three types of modifications: specifying more detailed in-
structions, simplifying agent tasks, and altering the agents’ plans.

https://doi.org/10.1145/3706598.3713581

Interactive Debugging and Steering of Multi-Agent Al Systems

These patterns reflect common failure modes in multi-agent sys-
tems, and AGDEBUGGER effectively supported participants in iter-
atively steering the agents towards correct behavior. Finally, we
conclude by presenting remaining open challenges in agent debug-
ging found from our study. Such challenges include decoupling
steering from the agent implementation and determining if edits
had an effect. AGDEBUGGER is available as an open source tool at
https://github.com/microsoft/agdebugger. In summary, this paper
makes the following contributions:

(1) Formative interviews with agent developers that reveal com-
mon challenges developers encounters while developing
multi-agent Al systems including understanding long, multi-
turn agent conversations, the lack of interactive debugging
support, and the need for better tooling to iterate on agent
configurations.

(2) A prototype agent debugging system, AGDEBUGGER, with
three key features for facilitating agent debugging: interac-
tively sending and stepping through agent messages, the
ability to interactively edit and steer agent teams, and an
overview visualization to summarize agent conversations
and edits.

(3) Results from a user study where participants use AGDEBUG-
GER to diagnose and then experiment with fixes for errors in
agent workflows. We identify common patterns of steering
across users around adding instructions to agent messages,
simplifying messages, and modifying the agents’ plan.

2 Related Work

2.1 Multi-Agent Al Systems

In recent years, general purpose Large Language Models (LLMs)
leveraging in-context learning (e.g., few-shot prompting), have
been applied to various domains that previously required training
specialized models [5]. When combined with the ability to use tools
and store state, these models can function as agents that interact
with the world to accomplish more complex tasks. Al agents have
been developed for tasks ranging from browsing the web [15, 49]
to advanced coding tasks that involve looking up documentation
and combining code authoring with execution [17, 41].

For more intricate problems, performance improvements can
often be achieved by multi-agent systems, where multiple special-
ized agents work together to plan and perform tasks [14, 22, 43, 47].
These agents use LLMs for decision making and planning by break-
ing down tasks into smaller sub-components, leverage tools to in-
teract with the world, and memory to keep track of past actions and
provide context for subsequent actions [14]. Multi-agent systems
typically combine multiple specialized agents, each with different
roles, prompts, tools, and memory that collaborate together to solve
tasks by planning and delegating to the appropriate agent. Such
systems demonstrate strong performance on complex tasks and
make it easier for developers to design and develop reusable agents
for different tasks, similar to object oriented programming [8, 14].
Creating multi-agent systems involves configuring each individual
agent’s capabilities and tools as well as how agents communicate
with one another. Frameworks such as AutoGen [43], CAMEL [22],

CHI ’25, April 26-May 1, 2025, Yokohama, Japan

OS-Copilot [47], Crew Al [9], and LangGraph [21] facilitate the de-
velopment of such systems, enabling the creation of LLM-powered
agents with distinct tools and roles.

Despite these advances, LLMs exhibit various failure modes,
such as losing track of critical information over long contexts [25]
and hallucinating facts that lack contextual grounding [26]. These
underlying model issues remain in multi-agent settings and can
be exacerbated when agents interact through chained model calls,
further complicating error tracking and resolution [44, 46].

2.2 LLM and Agent Debugging

Debugging a single LLM component or team of agents builds on
prior research on debugging traditional machine learning and AI
models. Researchers have previously recognized the difficulty of
diagnosing model failure modes [1, 2]. In classic ML workflows,
interactive debugging tools have been developed to assist develop-
ers at various stages of model development, from tracking model
changes [2] to identifying poorly performing data subsets during
evaluation [6]. One key insight from these tools is the value of
providing developers with direct access to the raw data driving
model decisions, enabling them to better understand and intervene
when failures occur [6, 31].

Prior research also discusses the value of counterfactual expla-
nations for understanding ML models [40]. Such methods allow
users to explore “what if” scenarios by modifying model inputs
and observing how predictions shift [20, 23, 42]. Interactive sys-
tems support what if analysis of NLP models, aiding users in gen-
erating variations of input sentences to test how model outputs
change [7, 35, 45].

For LLMs, debugging primarily involves crafting effective prompts
to specify a task, rather than selecting model training data or ar-
chitectures. Prompt engineering has become central to eliciting
desired LLM behaviors, but studies show that users often struggle
to express their design goals in prompts, and face challenges debug-
ging incorrect model outputs [16, 48]. Interactive tools allow users
to experiment with different system prompts and models [29, 38].
Tools like PromptMaker [16] and Sequences Salience [39] aim to
assist users in refining their prompts, while other systems allow
for iterative feedback-driven adjustments [32]. Other systems help
users compare the outputs from multiple prompts and use a “LLM
as a judge” to grade which outputs are better [18, 19, 37] or unit
test LLM components with code or model-based assertions [4, 33].
Recent research like ChainForge [3] or PromptChainer [44] have
contributed tools for creating and debugging pipelines of LLM calls,
however do not support LLM based agents.

Tools focused on debugging a single LLM component or pre-
defined pipeline of LLM calls do not fully address the challenges
associated with debugging multi-agent systems. Muti-agent debug-
ging requires understanding both individual agent behavior, tool
use, and memory as well as agent interactions over long multi-turn
conversations including appropriate delegation or task termination.
Improvements in one component can introduce errors in others,
underscoring the need for testing the entire agent team simultane-
ously on a task—a problem previously identified for pipelines of
traditional Al systems or chains of LLM calls [2, 28, 36, 44].

https://github.com/microsoft/agdebugger

CHI *25, April 26-May 1, 2025, Yokohama, Japan

Recent systems like AutoGen Studio [10], OpenDevin [41], or
Crew AI [9] provide interfaces for creating and interacting with
multi-agent Al teams for a task, allowing developers to communi-
cate with agents via a chat-style UL While these systems support
agent construction, they focus less on the interactions required
for interactive debugging. There remains limited HCI research on
the design of tools for debugging multi-agent systems and how
developers use such tools.

Prior research has demonstrated the power of pause and reset
mechanisms for debugging, such as the crash-and-rerun program-
ming model of TurKit that allows programmers to re-run programs
that make expensive function calls to crowdworkers [24]. Interac-
tive tools for LLM debugging like the OpenAl Playground provide
the ability to edit earlier LLM messages, but only support interac-
tion with a single LLM in a chat rather than a multi-agent team [29].
LangGraph offers a Ul for creating multi-agent systems based on a
graph communication model and offers support for breakpoints to
inspect agent state when called in the graph [21]. However their
implementation is not public, requires developers to pre-specify
breakpoints, and only works for graph-based agents. The pause
and reset interactions presented in AGDEBUGGER are applicable to
any multi-agent system that interacts by passing messages.

3 Background: Agent Framework and Tasks

This section describes three key background concepts: the imple-
mentation of the agent framework we used, reviews the GAIA
benchmark dataset for evaluating Al agents [27], and details an
example of a specific multi-agent team (implemented using this
framework) that achieves high performance on GAIA.

3.1 Agent Implementation Framework

Our debugging system is built on the open-source AutoGen frame-
work [43]. In this framework, agents are implemented as Python
classes that communicate by sending messages through a shared
runtime. These messages exchanged are also typed Python objects
containing data. Agents implement message handlers that respond
to particular types of messages. When an agent receives a message,
the framework triggers the appropriate handler, which might make
LLM calls, use tools, and send a new message in a response. Fur-
thermore, while processing a new message, agents often update
their state such as navigating to a new page in a web browser the
agent controls. All messages are sent through the central runtime
which manages a message queue. When messages are processed,
they are moved off the queue and sent to the appropriate agents.
This design allows for flexible patterns of communication between
agents, where agents can communicate directly with each other or
send messages to all other agents.

In addition to messages, agents can have internal “thoughts”
that are simply log messages. These thoughts are not sent to other
agents but can be helpful for debugging. Each agent can keep track
of its message history to provide context for future model calls.

3.2 GAIA Benchmark Tasks

An agent framework by itself is only half the story: it needs to be
applied to tasks or work to be of value. In this paper, we apply the
framework to problems from the GAIA agent benchmark, allowing

Epperson et al.

us to measure the proficiency of our agents and teams. The GAIA
benchmark is a collection of challenging Al assistant tasks that
require diverse skills such as coding, using the internet, and parsing
files [27]. It serves as a standardized way to evaluate the capabilities
of Al agents across a range of complex tasks. GAIA tasks are divided
into three levels of difficulty, with level 1 the easiest and level 3 the
hardest. As of writing, these tasks remain very challenging for Al
assistants, with the top-performing team on the GAIA leaderboard
scoring an average of around 35% on the test set [11].

In our studies and examples, we focus on two specific tasks from
the validation set of GAIA Level-1, shown in Table 1. These tasks
are complex as they involve searching for and synthesizing infor-
mation from multiple websites to generate the final answer. While
our agent team performs near the state-of-the-art on the GAIA
leaderboard, it consistently fails to complete these specific tasks
correctly, making them ideal candidates for debugging. On both
tasks, our agent team outputs an answer, but the answers are incor-
rect. We investigate these two tasks specifically in our user study
since both tasks are similar (e.g. web-focused and same difficulty
level) with prompts that are easy for participants to understand
without extra background.

ID Benchmark question Answer

T1 How many at bats did the Yankee with 519
the most walks in the 1977 regular sea-
son have that same season?

T2 Of the cities within the United States Braintree,
where U.S. presidents were born, which Honolulu
two are the farthest apart from the west-
ernmost to the easternmost going east,
giving the city names only? Give them
to me in alphabetical order, in a comma-
separated list

Table 1: Example agent tasks for debugging from the GAIA
Level-1 validation set [27].

3.3 Agent Team for GAIA Tasks

To address the GAIA benchmark tasks, we use the Magentic-One
generalist Al agent team [12]. This team, implemented using the
framework described above, consists of five agents that collaborate
to solve tasks:

(1) An Orchestrator who plans and controls the conversation

(2) A Coder who authors Python code to solve subproblems

(3) An Executor who executes code locally and returns results

(4) A File Surfer who can parse and interact with local files of
various formats (e.g., PDF, PowerPoint, etc.)

(5) A Web Surfer who can access and interact with web pages
in a browser, and can perform search queries, in a manner
comparable to prior web agents [15]

Each of these agents maintains their own state, has access to
different tools to fulfill user requests, and can make their own calls
to LLMs. To complete a task, the agents are given an input prompt,
then collaboratively develop and execute a plan to solve the task and
produce a final result. These agent conversations can become quite

Interactive Debugging and Steering of Multi-Agent Al Systems

lengthy. For example, in the runs we analyze, it took the agents 71
messages to produce an answer for task T1, and 90 messages for
task T2. The raw log files with the messages contain 6,368 words for
T1 and 7,230 words for T2. This complexity in agent interactions
highlights the need for effective debugging tools, which is the focus
of our research.

4 Formative Interviews on Agent Debugging

To better understand current developer pain-points around devel-
oping multi-agent Al systems, we interviewed five developers at
Microsoft with experience building multi-agent applications. We
recruited these participants within a large technology corporation.
All five had prior experience using the AutoGen multi-agent frame-
work [43]: two were core contributors to the open source project
and the other three had experience developing multi-agent proto-
types with the framework. Our participants were three research
scientists, one software engineer, and one engineering manager.

We conduced semi-structured interviews in a one hour session to
ask each participant about their development experience building
multi-agent systems. In our interviews, we asked each participant
questions about their prior experience developing agents, chal-
lenges they ran into, and desired features from agent debugging
tools. Our exact interview questions are included in Appendix A.
We took detailed notes during each interview and then did the-
matic analysis of interview notes to synthesize common themes.
Our interviewees described three primary pain points in developing
multi-agent apps, detailed below.

4.1 Understanding Long Agent Conversations is
Cumbersome

The first pain-point that our participants discussed is the difficulty
of understanding long agent conversations. To understand the re-
sults of a workflow, participants currently write all the messages
exchanged between agents to the system console. The console is
then saved as a single output text file and then reviewed post-hoc.

For a single task, on the order of 50-100+ text-heavy messages
might be exchanged between agents. Each message has metadata
information like the sender of the message, its recipient, and any
text generated from LLM calls or tool invocations. In some cases,
individual messages can themselves be difficult to interpret (e.g., the
output of Python scripts written by agents). However, interpretation
challenges compound as conversations grow and more agents are
involved. Participants must read lengthy histories to understand
both how the agents act and where things might be going wrong.

4.2 Lack of Support for Interactive Debugging

The next pain point described by participants is the current lack
of support for an interactive debugging experience. Participants
desired the ability to have fine-grained control over the agents as
they progress through a task. This includes interrupting the agents
if they seem to be stuck or going down the wrong path, resetting
agents to earlier points in the conversation, and editing messages
to steer agents towards the desired goal. To this end, both P2 and
P4 mentioned their desire to use “breakpoints” for agent debugging.
Once reached, breakpoints would interrupt agent execution, and
allow developers to understand and manipulate the state of each

CHI ’25, April 26-May 1, 2025, Yokohama, Japan

agent before continuing. For example, PDB (python debugger) pro-
vides a comparable experience for debugging traditional python
scripts [34]. Likewise, P5 drew parallels with the difficulties of de-
bugging distributed systems, and expressed a desire for tools that
capture, replay, and step through agent messages one at a time, step
by step. This style of interaction would be helpful because issues
often occur midway through a workflow. For instance, participants
described how the Al agents often suggest reasonable plans, exe-
cute the first few steps of the plans correctly, then get stuck on a
particular step, throwing off the rest of the workflow. In such cases,
participants expressed a desire to reset the workflow to the last
point where progress was being made, and then retry from this
location—perhaps with a newly-corrected plan.

4.3 Iterating on Agent Configuration

Finally, four participants noted that iterating on agent configura-
tions is currently a slow and arduous process. While debugging,
developers are continuously tweaking their agent configurations
by changing the system prompts, adding or removing agents from
the team, or altering the selection of available tools. At present, de-
velopers must restart the workflows from the beginning to test the
effectiveness of any given change. In cases where errors arise later
in the conversation, developers must then wait considerable time
to observe any impacts. Moreover, due to the stochastic nature of
LLMs, the same errors might not always occur, requiring multiple
run-throughs to gain confidence in a remediation. All of this slows
down the debugging process considerably. To this end, participants
expressed a desire to “freeze” the conversations at critical points
and then iterate on potential fixes while the problematic context is
isolated and in memory.

4.4 Design Goals

Based on our formative interviews and the reviewed studies on
Al debugging, we synthesized the following design goals for an
interactive debugging tool for Al agents. Users with such a tool

should be able to:

G1. Understand messages exchanged between agents. An
agent debugging tool needs to expose the messages sent
between agents so that users can understand the details
of the conversation and how the agents are progressing
through tasks. This is important for identifying where errors
are happening in the workflow.

G2. Interrupt the conversation and send new messages.
Users should be able to pause/interrupt the workflow at any
point, and send new messages to the agents.

G3. Reset back to a previous point in the workflow Once a
failure point is identified, users need the ability to reset to
an earlier point in the workflow in order to experiment with
steering agents to alternate paths.

G4. Change agent configurations. An agent debugging tool
should let users change agent configurations, such as the
prompts or models used, in order to experiment with fixes.

These design goals are aimed at supporting the debugging loop
presented in Figure 2, which is inspired by traditional software and
Al debugging loops. An Al agent debugging tool should be able to
help users both identify errors and experiment with fixes. G1 deals

CHI *25, April 26-May 1, 2025, Yokohama, Japan

with error identification, G4 deals with experimenting with fixes,
and G2 and G3 support both identification and experimentation.
We view this debugging process as a self-reinforcing loop where
users identify errors, then experiment with fixes which allows them
to refine their understanding of the error.

Experiment with fixes
Reset and retry, reset and edit
messages, send new message,
change agent configuration...

Identify error

Incorrect tool use,
bad instructions,
model hallucinations...

"
~

Figure 2: The agent debugging loop where developers itera-
tively identify errors and experiment with fixes that shape
their understanding of the issue.

5 AGDEBUGGER: Interactive Agent Debugging

Based on our design goals, we developed AGDEBUGGER, an inter-
active debugging tool for Al agents. AGDEBUGGER has three core
features that enable interactive agent debugging: (1) it presents
the messages exchanged between agents in an interactive message
viewer that also lets users send new messages, (2) it lets users reset
the agents workflow to earlier points in the conversation to edit,
and (3) it has an overview visualization for helping users navigate
long conversation histories.

5.1 Message Sending and History

The first feature of AGDEBUGGER is the ability to send new mes-
sages to agents and view the messages exchanged between agents
(design goals G1 and G2). Users can send messages to start the
agents working on a new task or pause agent execution to send
new messages during the middle of a run. This type of interaction
draws design inspiration from standard AI chat apps and prior
agent creation and chat interfaces [9, 10, 21]. Our message sending
feature extends these designs by providing fine grained conver-
sation control with the ability to pause execution and send new
messages to particular agents in the middle of a conversation.

Figure 3 shows the AGDEBUGGER interface, with message send-
ing controls appearing in panel A. This feature lets users send a
new message to all other agents (broadcast) or to any one agent in
particular. When a message is sent it is appended to the message
queue, where all messages are processed in the order in which they
arrived. Once processed, the message is recorded in the message
history, along with an execution timestamp. The message queue
can be run automatically with the play button or can be stepped
through one message at a time by the user. This step-by-step de-
bugging is similar to line-by-line execution provided by python
debuggers like PDB [34].

In the example in Figure 3 we can see the history of the current
conversation in the message history panel with the most recent
messages at the bottom. Here, the Orchestrator has asked the Web
Surfer to sort a table in the current web page, and the Web Surfer
has initiated an internal monologue (thought) to determine which
low-level action(s) will accomplish the Orchestrator’s instruction.
The next message in the queue is the result of the Web Surfer’s
action where it reports on clicking on a particular part of the page.

Epperson et al.

5.2 Message Resetting and Edits

While the ability to send messages to agents and view the con-
versation history is included in prior agent configuration tools,
AGDEBUGGER provides a novel interaction with the ability to reset
agents to previous points in the conversation and make edits to
messages (design goal G3). Since agents are stateful, resets and
edits require more than a simple transformation of the message his-
tory (e.g. truncating the transcript) that might work for non-agentic
LLM applications. AGDEBUGGER offers robust checkpointing sup-
port to reset the states of the agents themselves (e.g., having the
Web Surfer return to the web page it was visiting at that time).
Users can reset to an earlier point in a workflow in two ways.
They can directly edit a historical message inline then save the
edit to reset the conversation back to this timestamp. Or users
can click the reset button on a message if they wish to restore the
conversation back to that point without any changes to the message
(e.g., to simply retry the flow). This resetting interaction provides
an affordance for users to ask two core agent debugging questions:

(1) What happens if I retry the workflow from this point?
(2) What would have happened if this alternative message had
been produced?

Figure 4 shows an example where one agent is requesting infor-
mation from another agent, and the user is leveraging the edit and
reset capabilities to refine the request by providing more specific
instructions. This gives the user the ability to see what would have
happened if the Orchestrator had produced a different plan. If the
workflow now succeeds, they know to focus their efforts on making
the plans more precise rather than perhaps tweaking how the web
agent executes the plans.

5.2.1 Technical details: checkpoints and sessions. To support edit
and reset, AGDEBUGGER checkpoints each agent’s state before every
new message is processed (Figure 5). For some agents, these state
checkpoints might be simple (e.g., in the case of stateless agents like
the code Executor); for others like the Web Surfer the checkpoints
are more complex and contain information like the current URL and
position of the web browser viewport on the page. Nevertheless, all
agents must implement two methods, save_state and load_state,
that are called when the state is check-pointed or restored.

When a user requests a message reset, AGDEBUGGER forks the
conversation and creates a new session: the system retrieves the
checkpoint corresponding to the moment of the reset target mes-
sage, and restores the internal states of each agent accordingly. Mes-
sages and checkpoints before the reset are preserved and shared
between sessions, while new messages and checkpoints are added
only to the newly forked session. When the user is ready to re-
sume, the target message is added back to the queue, triggering the
continuation of the workflow.

For debugging and reproducibility purposes, checkpoints should
capture as much information as necessary in order to restore the
agents’ state with high fidelity. However, it is not always feasible,
desirable, or possible to perfectly restore state. For example, the Web
Surfer relies on a web browser to access pages, and the browser’s
internal state arguably includes the state of any running JavaScript
(not to mention the back-end state of the remote web application

Interactive Debugging and Steering of Multi-Agent Al Systems

© AGDebugger

Coder Bscutor ||| Masurter Websurfer orchasirater |
Message Histol
Send New Message 9 v
Publish to all in default v BroadcastMessage v WebSurfer - orchestrator
Enter message
orchestrator (thought) &

Updated Ledger:
Message Queue {
0 tasks running

"next_speaker": {

f at bats and walks.",
WebSurfer - User Response - None “answer": “WebSurfer"

or_question”: {

“answer

WebSurfer - Group Publish - Broadcasthessage at bats that season.”

"is_request_satisfied": {

I clicked 'Bases on Balls'.

Here is a screenshot of (1977 New York Yankees
Statistics | Baseball-Reference.con]

(https: //www. baseball-

reference. con/teams/NYY/1977. shtml#all_tean_batting).
The viewport shows 9% of the webpage, and is
positioned 16% down from the top of the page.

The following metadata was extracted from the
webpage:

{
“jsonld": [

"{\n \"econtext\":
\"http://schena.org\",\n \"@type\":
\"SportsTeam\",\n \"name\": \"New York
Yankees\",\n \"sport\": \"Baseball\",\n

orchestrator (thought) @

Next speaker WebSurfer

/teans/NYY/1977. shtal\", \n
\n \n an
"SportsOrganization\",\n

merican League\"\n An

\n o LAn \"coach\": {\n \"etype\":
\"Person\" “: \"Billy Martin\"\n

orchestrator - Group

User - WebSurfer

son: "We need specific data from the webpage about Yankees' 1977 regular season stats, particularly the number o

To get the exact number of at bats for the Yankee with the most walks in the 1977 regular season.",
Please identify the player with the most walks in the 1977 Yankees team stats and provide their number of

Please sort the tean batting table by walks in decreasing order and provide their number of at bats for the first row

CHI 25, April 26-May 1, 2025, Yokohama, Japan

Overview

Task Details Session1 R
Color: type v
xx o

01

M BroadcastMessage

M None
RequestReplyMessage

W ResetMessage
Thought

ThoughtMes:

x
Send - RequestReplyMessage 72) BroadcastMessage

llg;llllllllllllllllllllllllIl

Figure 3: AGDEBUGGER helps users interactively debug and steer their agent teams. (A) Users can interactively send new
messages, control the flow of messages, and see the history of agent messages (Section 5.1). (B) Users can revert to earlier points
in the workflow by resetting and editing messages (Section 5.2). (C) The overview visualization helps users make sense of long
conversations and the history of edits in an interactive visualization (Section 5.3).

orchestrator - Group Publish - BroadcastMessage L)

Please identify the player with the most walks in the 1977 Yankees team
stats and provide their number of at bats that season.

orchestrator - Group Publish - BroadcastMessage »

Please sort the team batting table by walks in decreasing order and
provide their number of at bats for the first row]

«

Figure 4: Users debug agent workflows by directly editing
prior agent messages then restarting the workflow from that
point, such as adding more specific instructions to a message
to steer the agents towards the correct outcome.

itself). Checkpointing all this internal information would be cum-
bersome and likely impossible to restore, and offers diminishing
returns over simply recording the URL and viewport location. To
this end, AGDEBUGGER adopts a good enough checkpoint policy—
when a user resets, AGDEBUGGER will put the agents close to where
they were at the time of the given checkpoint. From there, the
agents will naturally re-consider their state before continuing their
progress. The precise checkpoint fidelity needed for a given agent
is left as an implementation detail to the agent developer.

Messages Agent State Checkpoints
)
Timestep O WebSurfer ¥y Orchestrator

url: bing.com

page_scroll: O
|
S —

Timestep 1

WebSurfer ri-:

url: wikipedia.com
page_scroll: 0

N —
WebSurfer ¢V Orchestrator

url: wikipedia.com 2 &
page_scroll: 10 =

Timestep 2

Figure 5: Agent state is captured in a checkpoint before each
new message is processed to enable future message resets.

5.3 Conversation Overview Visualization

To help users navigate the agent conversation and edits, we de-
signed an overview visualization to summarize the messages in the
conversation (design goals G1 and G3). We draw design inspiration
from code commit graph visualizations that visualize code commit
history and branches [13] and unit visualizations [30]. Each mes-
sage is encoded as a rectangle where a conversation is a vertical
line of messages, the most recent at the bottom. As agents send new
messages, they are appended to the bottom of the current session.
Users can toggle the color of the rectangle to encode the message

CHI *25, April 26-May 1, 2025, Yokohama, Japan

type, sender, or recipient. The conversation overview also links to
the full messages in the history view to facilitate navigating from
the overview to the full messages. Clicking on a message scrolls the
history view to the target message, and a message’s full metadata
is shown on hover

When a user resets to an earlier message and creates a new ses-
sion, we annotate the visualization with a horizontal dash at the
reset point. Messages after the fork point are displayed normally,
however the prior messages have less opacity to indicate they are
the same as the previous session before the fork point. Aligning
the conversation forks helps users compare how the conversations
differ after each edit, for example if different agents are invoked
or different message types exchanged. The linear structure of our
visualization facilitates understanding agents communicate over
time and changes after edits. This is complimentary to other visual-
ization approaches that show how agents communicate as a graph
at a single point in time [21].

The example shown in Figure 6 shows the overview visualization
with two resets. For benchmark tasks like the ones in our example,
the check or X characters denote if the corresponding session is
passing or failing. The example shows how the first two conver-
sations were not outputting the correct answer, whereas the user
made an edit that produced the correct answer in the final one.

5.4 Agent Configuration

AGDEBUGGER also supports configuring the agents used in a work-
flow (design goal G4). We do not consider this a primary debugging
feature of the system as AGDEBUGGER only supports basic agent
configuration, however still provides an interactive way to tweak
agent behavior while experimenting with edits to agent messages
during a workflow. Future debugging tools can integrate the de-
sign from systems like AutoGen Studio [10] or Crew Al [9] which
provide deeper customization of agents and tools in the UL

The cards at the top of the interface show the current agents
in the debugging session. For example, in Figure 3 AGDEBUGGER
shows there are five agents in the current session: the Coder, Ex-
ecutor, File Surfer, Web Surfer, and Orchestrator. Clicking on one
of the cards shows the configurable details of the agent such as the
model it uses, the system prompt, or other configuration details.

In the underlying agent framework, agents are defined through
code and are very flexible. Agents can expose editable configura-
tion options through two methods to load_config and save_config.
These functions return dictionaries with values such as the system
prompt, model name, or temperature which can then be edited in
the agent panel in AGDEBUGGER. After an agent’s configuration is
changed, any future messages will use this updated configuration.

6 User Study

To evaluate our system, we ran a two-part user study. In the first
part of the study, six participants used AGDEBUGGER to summarize
the errors they found in two agent runs that had failed. In the
second part, we provided a compiled list of the agents’ errors to
eight new participants and asked them to edit and steer the agents
using AGDEBUGGER.

Epperson et al.

Overview Session 2
Color: type v

X X M Broadcast
o 1 2 B None
- RequestReply
Reset
[u
Thought
[]
[
[]
[
]
[
[=N
k orchestrator - Group
BroadcastMessage

[
[

[]
-

[

[
il .
m .

[]

Figure 6: The interactive overview visualization summarizes
the agent conversation. Each reset forks the current conver-
sation and creates a new conversation session, represented
as a new column. Users can toggle the message color to repre-
sent the message type, sender, or receiver. Message details are
shown on hover and clicking navigates to the full message
in the Message History view.

6.1 Study Design

Part 1: Error Identification. Part 1 of our study serves as a prelim-
inary user study to gather data on the agent errors identified by
participants in the two tasks, assess how long it takes participants
to identify messages to edit, and measure participant preference
in having the ability to edit and reset messages. We recruited six
participants from Microsoft all with backgrounds in computer sci-
ence and experience working with LLMs. Four participants were
graduate students, and two were research scientists, with the ma-
jority having experience developing Al agents and working with
the GAIA benchmark for agent evaluation.

Each participant analyzed logs from two agent runs on differ-
ent tasks: one using AGDEBUGGER and another using a reduced
version of the system that lacked the ability to reset messages or
the overview visualization that shows differences between sessions.
This reduced version represented a baseline developer workflow

Interactive Debugging and Steering of Multi-Agent Al Systems

where logs could be read but not interactively explored. Participants
were instructed to identify errors and propose fixes, entering their
responses in an online form. Participants debugged runs from the
five-agent team on the two tasks described in Table 1.

For both tasks (T1 and T2), participants were given a task de-
scription, the expected output, and the incorrect agent output. The
study included a demo and a 15-minute session with each system,
followed by a post-task survey. The order of log reviews and system
conditions was randomized and counterbalanced.

Part 2: Interactive Steering of Agents. Part 2 of our study serves
as our main evaluation of AGDEBUGGER, to gather data on how
developers use the system to debug and steer multi-agent systems.
To gain deeper insights, participants were assigned just one task,
allowing us to closely observe their editing strategies. We recruited
eight additional participants from the same tech company, all ex-
perienced with LLMs. Three participants were research scientists,
and five were graduate students. Their experience with developing
Al agents varied: two had no prior experience, two had limited
experience, two had moderate experience, and two had extensive
experience. Additionally, two participants had worked with the
agent framework and the GAIA benchmark.

Participants were asked to debug a single failing agent run (T1
or T2) using AGDEBUGGER with all features enabled. They were
instructed to understand the agents’ errors and steer them toward
the correct output by editing messages or agent configurations. We
provided a summary of errors identified in Part 1, helping to reduce
onboarding time. Each study session lasted one hour, including a
demo, 30 minutes for debugging, and an exit interview.

During the debugging process, we observed the types of edits
participants made to the agents and how they approached the task.
We also asked participants to think aloud as they used the tool.
Afterward, participants completed a post-task questionnaire where
they rated the usability of AGDEBUGGER and the helpfulness of its
individual features. We also asked open-ended questions to gather
insights into their strategies for steering agents and their overall
impressions of the system. Questions are included in Appendix B.

For analysis, we aggregated the Likert scale ratings to assess
system usability and feature usefulness. We also reviewed task
recordings to annotate the edits made by participants and quali-
tatively coded interview transcripts to identify themes related to
their open-ended responses.

6.2 Part 1 Findings: Error Identification

For each task, we analyzed the six error descriptions produced by
participants, which revealed four primary errors for T1 and three
primary errors for T2. For example, for task T1, which involves
looking up the statistics for a Yankees player from the 1977 team
(see Table 1 for exact benchmark question phrasing), participants
identified several key issues.

First, the Web Surfer agent failed to correctly parse the table
containing the statistics once it navigated to the correct page. Ad-
ditionally, the Orchestrator’s instructions to the Web Surfer were
often too high-level, omitting crucial steps like sorting the table
first. Finally, the agents frequently defaulted to returning statistics
for a famous player from the 1977 Yankees instead of the correct

CHI ’25, April 26-May 1, 2025, Yokohama, Japan

player. The errors identified by participants in part 1 were shared
with participants in part 2 when they began debugging.

We observed that participants spent significant time reading
through messages to trace the agents’ progress and pinpoint where
errors occurred. The error descriptions produced in both conditions
(while using AGDEBUGGER and the baseline system) were equally
high-quality. Every participant also edited a message at least once
while they were reading the log in the AGDEBUGGER condition.
Reading agent messages for debugging took considerable time be-
fore participants started to edit any messages, with participants
taking about 10 minutes on average (out of the total 15 minutes
allocated per task) before starting to experiment with edits.

Even just for identifying errors, participants found the extra
features in AGDEBUGGER helpful, with five out of six preferring
AGDEBUGGER to the baseline version. The ability to interactively
edit and reset messages was the primary reason for their preference.
As one participant noted:

“Message editing is very useful. It’s like you want to
change some ground truth in the middle of the messages
and then see how the agents behave from there but with
code that’s very hard to do” — P2

This interactive capability helped streamline debugging, making
AGDEBUGGER more favorable compared to the baseline, which
lacked editing features.

6.3 Part 2 Findings: AGDEBUGGER Facilitates
Interactive Steering and Debugging

In the second part of our study, our participants used the interactive
debugging features of AGDEBUGGER to try to steer the agents to-
wards outputting the correct answer for the task. While steering the
agents towards outputting the exact correct answer proved quite
difficult (two out of eight participants were able to steer agents to-
wards exact right answer), interacting with the agent teams helped
participants refine their understanding of how the agents operated
and why they were making errors.

Participants found AGDEBUGGER helpful to facilitate this debug-
ging and overall rated the system as helpful and that they would
use it again for debugging in the future (Figure 7 Left). We also
collected ratings for the three primary debugging features in AGDE-
BUGGER (Figure 7 Right) to better understand what contributed to
the overall system ratings. Participants rated the message resetting
feature most highly with a mean rating of 4.9/5. Over the 30 minute
debugging session, every participant edited messages at least once,
with several participants making five separate edits (Figure 8).

Participants described how the ability to reset to earlier messages
and steer the conversation helped them understand what is going
on in the workflow, generating insights that would not have been
possible otherwise:

“When I'm trying to develop what a language model is
doing, what I want to do is see what’s the result when
I create slight variations on a given point in a given
exchange. And so being able to edit the message was I
think the core insight of this entire system. And I think
that it is a necessary insight when developing any sort
of language models that interact with each other.” — P7

CHI 25, April 26-May 1, 2025, Yokohama, Japan

System Usability Ratings

Helpful %8

Easy to use -X0)

Would use again -]

1
Strongly Disagree Neutral

Strongly Agree

Feature Usability Ratings

Send New Message {4/

Backtrack and Edit -Z8¢)

Overview Visualization -4/

f T 1
1 3 5
Strongly Disagree Neutral Strongly Agree

Figure 7: System and feature-level ratings scores from part 2
of our user study. Participants found AGDEBUGGER helpful
for debugging with the ability to backtrack and edit as the
most highly rated feature. Mean scores are plotted along with
a 95% confidence interval.

By editing messages, participants could see what would have hap-
pened later on in the task. This gives them the ability to do light-
weight counterfactual testing for agent workflows and pinpoint
where exactly the errors are coming from in the workflow.
Sending new messages and the overview visualization were also
both highly rated features with average scores of 4.1/5. Especially
for long conversation histories or after many edits, the visualization
helped participants navigate where they were in the workflow.
Although AGDEBUGGER allows users to update basic agent con-
figuration like the agent’s system prompt or the model used for LLM
calls, no participants used this feature. Participant behavior and
comments indicated they were worried about accidentally breaking
the agent behavior without more knowledge of its implementation.
Our conjecture is that editing the messages exchanged between
agents is a more lightweight and faster first step to test agent be-
havior than updating the agent configuration and that updating
agent configuration might occur over a longer debugging period.

6.4 Three User Approaches to Steer Agents

Across the eight study sessions, participants edited messages a total
of 24 times. We analyzed the changes made to the messages and
categorized them into three high level categories:

(1) Add more specific instructions

(2) Simplify instructions by removing text

(3) Modify the goal of the plan

Examples of each edit type from the study are included in Fig-
ure 9. The first type of edit was the most common: adding instruc-
tions that are more specific and concrete. More than half of
all the message edits fell into this category (14/24). This edit type
closely corresponds to a commonly observed failure mode of Al
agent teams: that the plans created are often not at the right level
of granularity. Therefore, when another agent is told to execute
this plan it is open to interpretation and might fail. The example
on the left of Figure 9 demonstrates this plan refinement where

Epperson et al.

Number of message edits

w

o
[0}
"
S 2
G
2,
€
=3
z
2 3
Type of edit
Add
Simplify

Modty

Figure 8: Each participant in part 2 of our user study used
the message editing feature to help them debug, with some
participants editing messages five separate times. The most
common edit was to add more specific instructions to the
message, followed by equal rates of simplification of instruc-
tions and modifying the goal of the plan.

the participant changed a message from a high-level instruction
from the Orchestrator to the Web Surfer to something more directly
actionable like telling the web surfer to first sort the table and then
return the result in the first row. By making these types of edits,
users are able to answer questions like: With a more actionable plan,
would the agents have made progress?

The next type of edit is almost the inverse of the first: making
instructions simpler. LLMs have a tendency to be verbose and
struggle to attend to all parts of long instructions [25], so concise
instructions are key. With this type of edit, users would simplify
the task to see if the LLMs could first succeed on a sub-task before
moving on to the next component. In the example in the middle of
Figure 9, the participant noticed that the agent was struggling with
the compound instruction to first identify the player with the most
walks and then provide their number of at bats. Therefore, they
removed the second part of the instruction to nudge the agent to-
wards completing a simpler sub-task first. This type of edit enables
users to ask: With an easier plan, would agents have made progress?

The final category of edit is the most drastic and involves modi-
fying the plan generated by the agents. For example, in Figure 9
right, we see an example where a participant nudges the agents
towards using a code-based approach to solve the task since they
were previously failing with looking up the information on the web.
The results of this new execution inform users’ decisions about
how the agents might approach the task more successfully. Another
instance of this type of edit occurred when a participant changed
the URL the agents chose to visit, hoping the new URL might help
them succeed in the task by providing better information. Like the
previous two types of edits, this type of edit is a form of coun-
terfactual testing where a user is investigating: What would have
happened if the agents came up with a different plan?

Interactive Debugging and Steering of Multi-Agent Al Systems

Add more specific instructions

Simplify instructions

CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Modify plan

Please identify the player with the most
walks in the 1977 yankees team stats and
provide their number of at bats that
season.

Please identify the player with the most
walks in the 1977 Yankees team stats and
provide their number of at bats that
season.

How many at bats did the yankee with
the most walks in the 1977 regular season
have that same season?

v

!

!

Please sort the team batting table by

p
Please identify the player with the most
walks in the 1977 Yankees team stats.

How many at bats did the yankee with
the most walks in the 1977 regular season

walks in decreasing order and provide
their number of at bats for the first row

have that same season? Python has lots
of different libraries that can help with

different things. Maybe there is one that
can lookup past baseball stats?

Figure 9: Examples of the three types of edits participants made to steer models. Add edits occurred when users add extra
instructions or make instructions more specific. Simplify edits involved removing unnecessary details from messages. Modify

edits involve totally changing the instruction or result.

6.5 User Study Limitations

Our current study design is subject to several limitations. First,
the 30-minute debugging session provided to participants in the
second part of the study may have been insufficient for them to
engage with all the issues in a failing agent run. Second, we tested
the system with users on only two benchmark tasks from GAIA.
While we believe these tasks are representative of general agent
development tasks, it remains to be seen how the tool assists devel-
opers working on other types of tasks. Future studies could explore
longer-term usage of tools like AGDEBUGGER and investigate how
developers utilize them for developing and debugging multi-agent
teams over extended periods. Additionally, we acknowledge that
tools like AGDEBUGGER might be even more beneficial when used
concurrently during the active development or tweaking of agents,
an aspect not fully captured in our study.

7 Discussion

AGDEBUGGER is designed to help developers debug multi-agent Al
teams, where multiple agents with distinct roles and capabilities
collaborate to solve complex tasks. Our system and user study build
on prior work in interactive probing of Al and Large Language
Models (LLMs) [2, 16, 31, 38, 39], extending the concept of interac-
tive debugging to multi-agent Al teams. These teams pose unique
challenges due to the autonomous nature of the agents, their use
of external tools to interact with the world, and the long, multi-
turn conversations that occur between agents. Understanding such
complex behaviors requires new interactive tools for analyzing and
probing agent interactions.

AGDEBUGGER introduces several key mechanisms to enable this
interactivity, allowing developers to modify messages exchanged
between agents and explore counterfactual scenarios by altering
these intermediate communications. This allows users to probe
how changes to agent messages affect their collective behavior. In
the following section, we discuss the current limitations of our
approach (e.g., handling non-resettable actions, verifying edits) and
outline the challenges and opportunities for advancing interactive,
steerable multi-agent systems in the future.

7.1 Open Challenges for AI Agent Steering

The development and study of AGDEBUGGER revealed several open
challenges in developing interactive systems for debugging multi-
agent teams.

Dealing with non-resettable agent actions. One challenge with resets
(i.e., rolling back the agent’s state) is managing actions that affect
the external world beyond the agent. For instance, if an agent sends
an email, it is nearly impossible to un-send it. As a result, AGDEBUG-
GER’s checkpoint and reset mechanisms are limited to controlling
the agent’s internal state or handling situations where an undo
operation is possible. This limitation underscores a critical safety-
related design consideration for rollback strategies. When agents
perform reversible actions, their behavior can be more flexible, as
these actions can be reset or modified by tools like AGDEBUGGER.
However, recognizing that some actions are irreversible encourages
developers to implement safeguards for Al agents, such as moni-
toring, pre-execution validation, or stricter constraints on actions
that cannot be undone.

Steering requires deep knowledge of implementation. A challenge
that our user study revealed was that steering agents was relatively
easier with a deeper technical understanding of the agent’s imple-
mentation. In particular, knowledge on how each agent processes
instructions and uses its tools. For example, the Web Surfer agent,
which participants debugged, is designed to perform one task at a
time, such as navigating to a specific URL or clicking a button on
a web page. However, some participants attempted to modify the
Web Surfer’s input plan with reasonable but overly complex tasks,
such as instructing it to visit three websites to gather information
before responding. These changes were unsuccessful because the
Web Surfer is designed to handle only one task per instruction, and
could not perform multiple steps in sequence. Additionally, par-
ticipants did not update the agent’s configuration, as they lacked
in-depth knowledge of how the agent utilized its tools. Since the
input to Al agents is text, it might be less clear exactly what kind
of text they expect whereas in traditional programming APIs these
input constraints are often made more explicit through types and
input checks. This challenge highlights the need for better com-
munication of an agent’s capabilities, enabling end users to better
understand and influence the agent’s behavior.

CHI *25, April 26-May 1, 2025, Yokohama, Japan

Did my edit actually work? A similar challenge participants faced
when interacting with the Al agents was tracing the effect of ed-
its. Whenever an agent makes an inference call to an LLM, the
response could be non-deterministic (depending on model temper-
ature settings). As agent conversations progress, more and more
messages are saved and then injected into the context for the next
model call. Therefore, when a message is changed, particularly if
it is later on in the conversation, the LLM response might attend
more to the earlier messages rather than the one that was updated.
This reflects a known limitation of LLMs where they do not always
attend to all information in long contexts equally well [25]. From
a debugging perspective, this means that even after a message up-
date it can be hard to immediately understand if the new run is
different from before. Sometimes the edit may not have an obvious
effect until after several conversation turns. This, combined with
the non-deterministic nature of LLM responses, often left partici-
pants unsure if their interventions were having the intended effect,
echoing the challenges identified in prior literature on the difficulty
of debugging cascading errors in model pipelines [36, 44].

We saw this challenge materialize for several of our participants
when they wanted to test a hypothesis by changing a message but
the agents still did not obviously abide by the new plan. This led
to frustration when the agents were not responding to changes.
For example, after several rounds of editing one of our participants
changed a message to very directly tell the agents what not to do by
adding “DO NOT GIVE ME A SUMMARY OF THE WHOLE PAGE,
I JUST NEED THE LIST OF CITIES.” to the end of the message.

Participants that made edits to messages earlier in the agent
conversation seemed to have more success steering. Both of the
participants who successfully steered the agents towards producing
the correct answer editing messages towards the beginning of the
conversation rather than at the end. One changed the agent plan (a
modify plan edit) and told the agents to use a code-based approach
rather than searching for the result on the web. The other simplified
the plan the agents were executing on a web page (a simplify edit),
telling them to first sort a table before returning results. Since
these were edits to earlier messages, the agents’ behavior actually
changed and they returned the correct result.

7.2 Future Directions for Multi-Agent
Debugging
Future work can build on the design and findings of AGDEBUGGER

to further improve the debugging experience for Al agents along
the following dimensions.

Direct performance feedback to agents. In AGDEBUGGER, users guide
agents by directly modifying their messages, in essence simulating
agent behavior as the edited message is delivered as a normal agent
message. This approach gives users greater control over agent out-
puts but requires a deep understanding of the agents’ mechanisms
to craft effective edits. Alternatively, users can provide real-time nat-
ural language feedback or rewards, simply indicating when agents
are off-course and need to adjust. Prior research has developed
interactive systems that incorporate this type of feedback for single
model calls or prompts, but not for the more complex, multi-agent

Epperson et al.

configurations that we examined [32]. Future research could ex-
plore methods for integrating user feedback into multi-agent AI
workflows, allowing agents to dynamically adapt to feedback.

Ensuring Robustness and Generalizing Fixes. While building com-
plex Al agent teams, developers need different ways to test for
robustness and generalize fixes for recurring error patterns. When
users edit a message and get a different outcome in AGDEBUGGER, it
is not immediately obvious if this was a reliable edit or a fortunate
outcome based on stochastic model responses. Running the same
edit multiple times can help developers determine if the change
produces consistent results across different scenarios, which is key
to identifying and generalizing solutions that prevent similar er-
rors from occurring in the future. Prior systems that help users
compare LLM responses across prompt iterations or model changes
might be extended to help facilitate this comparison in multi-agent
settings [3, 18, 19]. Exploring how repeated edits contribute to
identifying recurring error patterns and their systematic resolution
presents a valuable opportunity for future research, as it helps to
ensure that agents improve their behavior holistically rather than
merely correcting isolated issues.

Automatic error identification. Finally, our user study indicated that
reading and pinpointing errors in agent conversations is a time-
consuming part of debugging before users can experiment with
changes. Future research might investigate automatic methods of
error identification to help users spot issues in long multi-turn agent
conversations more quickly and identify points for intervention,
building on recent research that uses LLMs as a judge to more easily
parse if model responses are high quality [33, 37].

8 Conclusion

In conclusion, we present the design and evaluation of an interactive
multi-agent debugging tool, AGDEBUGGER. AGDEBUGGER enables
users to steer multi-agent Al teams by editing the messages sent
between agents and reverting them back to earlier checkpoints.
The findings from our user study reveal common user strategies
towards steering agent teams, some of the open difficulties of this
task, and highlight the need for fine-grained interactive control
of multi-agent Al teams. Future research can focus on refining
feedback mechanisms from users to agents and how to design Al
agent interactions to be safe, easy to debug, and easy to reset.

Acknowledgments

Many thanks to Grace Proebsting, Omar Shaikh, Steve Drucker,
Gonzalo Ramos, and the MSR Al Frontiers team for their feedback
on this project. We also thank our user study participants for their
participation and reviewers for their feedback.

References

[1] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software engineering for machine learning: a case study. In Proceedings of the
41st International Conference on Software Engineering: Software Engineering in
Practice (Montreal, Quebec, Canada) (ICSE-SEIP °19). IEEE Press, New York, NY,
USA, 291-300. https://doi.org/10.1109/ICSE-SEIP.2019.00042

Saleema Amershi, Max Chickering, Steven M. Drucker, Bongshin Lee, Patrice
Simard, and Jina Suh. 2015. ModelTracker: Redesigning Performance Analysis
Tools for Machine Learning. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (Seoul, Republic of Korea) (CHI ’15).

[2

https://doi.org/10.1109/ICSE-SEIP.2019.00042

=

= =

=

[

=

Interactive Debugging and Steering of Multi-Agent Al Systems

Association for Computing Machinery, New York, NY, USA, 337-346. https:
//doi.org/10.1145/2702123.2702509

Tan Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and Elena
Glassman. 2023. ChainForge: A Visual Toolkit for Prompt Engineering and LLM
Hypothesis Testing. arXiv:2309.09128 [cs.HC]

Autoblocks AL 2024. Autoblocks. https://www.autoblocks.ai. Accessed: 2024-12-
02.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., Red Hook, NY,
USA, 1877-1901. https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Angel Alexander Cabrera, Erica Fu, Donald Bertucci, Kenneth Holstein, Ameet
Talwalkar, Jason I. Hong, and Adam Perer. 2023. Zeno: An Interactive Framework
for Behavioral Evaluation of Machine Learning. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI
’23). Association for Computing Machinery, New York, NY, USA, Article 419,
14 pages. https://doi.org/10.1145/3544548.3581268

Furui Cheng, Vilém Zouhar, Robin Shing Moon Chan, Daniel Furst, Hendrik
Strobelt, and Mennatallah El-Assady. 2024. Interactive Analysis of LLMs using
Meaningful Counterfactuals. arXiv:2405.00708 [cs.CL] https://arxiv.org/abs/
2405.00708

Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xiangrui Meng, Sirui Hong,
Wenhao Li, Zihao Wang, Zekai Wang, Feng Yin, Junhua Zhao, and Xiugiang He.
2024. Exploring Large Language Model based Intelligent Agents: Definitions,
Methods, and Prospects. arXiv:2401.03428 [cs.Al] https://arxiv.org/abs/2401.
03428

CrewAl 2024. CrewAl https://www.crewai.com/. Accessed: 2024-12-02.
Victor Dibia, Jingya Chen, Gagan Bansal, Suff Syed, Adam Fourney, Erkang Zhu,
Chi Wang, and Saleema Amershi. 2024. AutoGen Studio: A No-Code Developer
Tool for Building and Debugging Multi-Agent Systems. arXiv:2408.15247 [cs.SE]
https://arxiv.org/abs/2408.15247

Hugging Face. 2024. GAIA Benchmark Leaderboard. https://huggingface.co/
spaces/gaia-benchmark/leaderboard Accessed 08-2024.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas,
Erkang (Eric) Zhu, Friederike Niedtner, Grace Proebsting, Griffin Bassman, Jack
Gerrits, Jacob Alber, Peter Chang, Ricky Loynd, Robert West, Victor Dibia, Ahmed
Awadallah, Ece Kamar, Rafah Hosn, and Saleema Amershi. 2024. Magentic-One: A
Generalist Multi-Agent System for Solving Complex Tasks. Technical Report MSR-
TR-2024-47. Microsoft. https://www.microsoft.com/en-us/research/publication/
magentic- one-a-generalist-multi-agent- system-for- solving- complex- tasks/
GitKraken. 2024. GitKraken Commit Graph: Bring color & clarity to your commit
history. https://www.gitkraken.com/solutions/commit-graph. Accessed: 2024-09.
Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V.
Chawla, Olaf Wiest, and Xiangliang Zhang. 2024. Large Language Model Based
Multi-agents: A Survey of Progress and Challenges. In Proceedings of the Thirty-
Third International Joint Conference on Artificial Intelligence, [JCAI-24, Kate Larson
(Ed.). International Joint Conferences on Artificial Intelligence Organization,
Online, 8048-8057. https://doi.org/10.24963/ijcai.2024/890 Survey Track.
Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang,
Zhenzhong Lan, and Dong Yu. 2024. WebVoyager: Building an End-to-End Web
Agent with Large Multimodal Models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computational
Linguistics, Bangkok, Thailand, 6864-6890. https://aclanthology.org/2024.acl-
long.371

Ellen Jiang, Kristen Olson, Edwin Toh, Alejandra Molina, Aaron Donsbach,
Michael Terry, and Carrie J Cai. 2022. PromptMaker: Prompt-based Prototyping
with Large Language Models. In Extended Abstracts of the 2022 CHI Conference
on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI EA °22).
Association for Computing Machinery, New York, NY, USA, Article 35, 8 pages.
https://doi.org/10.1145/3491101.3503564

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press,
and Karthik R Narasimhan. 2024. SWE-bench: Can Language Models Resolve
Real-world Github Issues? https://openreview.net/forum?id=VTF8yNQM66
Minsuk Kahng, Ian Tenney, Mahima Pushkarna, Michael Xieyang Liu, James
Wexler, Emily Reif, Krystal Kallarackal, Minsuk Chang, Michael Terry, and Lucas
Dixon. 2025. LLM Comparator: Interactive Analysis of Side-by-Side Evaluation
of Large Language Models. IEEE Transactions on Visualization and Computer
Graphics 31, 1 (2025), 503-513. https://doi.org/10.1109/TVCG.2024.3456354

CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Tae Soo Kim, Yoonjoo Lee, Jamin Shin, Young-Ho Kim, and Juho Kim. 2024.
EvalLM: Interactive Evaluation of Large Language Model Prompts on User-
Defined Criteria. In Proceedings of the 2024 CHI Conference on Human Factors in
Computing Systems (Honolulu, HI, USA) (CHI "24). Association for Computing
Machinery, New York, NY, USA, Article 306, 21 pages. https://doi.org/10.1145/
3613904.3642216

Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. 2015.
Principles of Explanatory Debugging to Personalize Interactive Machine Learning.
In Proceedings of the 20th International Conference on Intelligent User Interfaces
(Atlanta, Georgia, USA) (IUI '15). Association for Computing Machinery, New
York, NY, USA, 126-137. https://doi.org/10.1145/2678025.2701399

LangChain. 2024. LangGraph Studio. https://github.com/langchain-ai/langgraph-
studio. Accessed: 2024-12-02.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and
Bernard Ghanem. 2023. CAMEL: Communicative Agents for "Mind" Exploration
of Large Language Model Society. arXiv:2303.17760 [cs.Al] https://arxiv.org/
abs/2303.17760

Brian Y. Lim, Anind K. Dey, and Daniel Avrahami. 2009. Why and why not
explanations improve the intelligibility of context-aware intelligent systems. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Boston, MA, USA) (CHI ’09). Association for Computing Machinery, New York,
NY, USA, 2119-2128. https://doi.org/10.1145/1518701.1519023

Greg Little, Lydia B. Chilton, Max Goldman, and Robert C. Miller. 2010. TurKit:
human computation algorithms on mechanical turk. In Proceedings of the 23nd
Annual ACM Symposium on User Interface Software and Technology (New York,
New York, USA) (UIST ’10). Association for Computing Machinery, New York,
NY, USA, 57-66. https://doi.org/10.1145/1866029.1866040

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2024. Lost in the Middle: How Language Models
Use Long Contexts. Transactions of the Association for Computational Linguistics
12 (2024), 157-173. https://doi.org/10.1162/tacl_a_00638

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. 2020. On
Faithfulness and Factuality in Abstractive Summarization. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel Tetreault (Eds.). Association for Compu-
tational Linguistics, Online, 1906-1919. https://doi.org/10.18653/v1/2020.acl-
main.173

Gregoire Mialon, Thomas Scialom, Clémentine Fourrier, Thomas Wolf, and Yann
LeCun. 2024. GAIA: A Benchmark for General Al Assistants. https://ai.meta.
com/research/publications/gaia-a-benchmark-for-general-ai-assistants/
Besmira Nushi, Ece Kamar, Eric Horvitz, and Donald Kossmann. 2017. On human
intellect and machine failures: troubleshooting integrative machine learning
systems. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
(San Francisco, California, USA) (AAAI'17). AAAI Press, New York, NY, USA,
1017-1025.

OpenAl 2024. Chat Playground. https://platform.openai.com/playground/. Ac-
cessed: 2024-09-05.

Deokgun Park, Steven M. Drucker, Roland Fernandez, and Niklas Elmqvist. 2018.
Atom: A Grammar for Unit Visualizations. IEEE Transactions on Visualization
and Computer Graphics 24, 12 (2018), 3032-3043. https://doi.org/10.1109/TVCG.
2017.2785807

Kayur Patel, Naomi Bancroft, Steven M. Drucker, James Fogarty, Amy J. Ko,
and James Landay. 2010. Gestalt: integrated support for implementation and
analysis in machine learning. In Proceedings of the 23nd Annual ACM Symposium
on User Interface Software and Technology (New York, New York, USA) (UIST
’10). Association for Computing Machinery, New York, NY, USA, 37-46. https:
//doi.org/10.1145/1866029.1866038

Savvas Petridis, Benjamin D Wedin, James Wexler, Mahima Pushkarna, Aaron
Donsbach, Nitesh Goyal, Carrie J Cai, and Michael Terry. 2024. Constitution-
Maker: Interactively Critiquing Large Language Models by Converting Feedback
into Principles. In Proceedings of the 29th International Conference on Intelligent
User Interfaces (Greenville, SC, USA) (IUI "24). Association for Computing Ma-
chinery, New York, NY, USA, 853-868. https://doi.org/10.1145/3640543.3645144
Promptfoo. 2024. Promptfoo. https://www.promptfoo.dev/. Accessed: 2024-12-02.
Python Software Foundation. 2024. The Python Debugger (pdb). https://docs.
python.org/3/library/pdb.html. Accessed: 2024-09-05.

Marco Tulio Ribeiro and Scott Lundberg. 2022. Adaptive Testing and Debugging
of NLP Models. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), Smaranda Muresan, Preslav
Nakov, and Aline Villavicencio (Eds.). Association for Computational Linguistics,
Dublin, Ireland, 3253-3267. https://doi.org/10.18653/v1/2022.acl-long.230

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar
Ebner, Vinay Chaudhary, and Michael Young. 2014. Machine Learning: The High
Interest Credit Card of Technical Debt.

Shreya Shankar, J.D. Zamfirescu-Pereira, Bjoern Hartmann, Aditya
Parameswaran, and Jan Arawjo. 2024. Who Validates the Validators? Aligning
LLM-Assisted Evaluation of LLM Outputs with Human Preferences. In Proceed-
ings of the 37th Annual ACM Symposium on User Interface Software and Technology

https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/2702123.2702509
https://arxiv.org/abs/2309.09128
https://www.autoblocks.ai
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3544548.3581268
https://arxiv.org/abs/2405.00708
https://arxiv.org/abs/2405.00708
https://arxiv.org/abs/2405.00708
https://arxiv.org/abs/2401.03428
https://arxiv.org/abs/2401.03428
https://arxiv.org/abs/2401.03428
https://www.crewai.com/
https://arxiv.org/abs/2408.15247
https://arxiv.org/abs/2408.15247
https://huggingface.co/spaces/gaia-benchmark/leaderboard
https://huggingface.co/spaces/gaia-benchmark/leaderboard
https://www.microsoft.com/en-us/research/publication/magentic-one-a-generalist-multi-agent-system-for-solving-complex-tasks/
https://www.microsoft.com/en-us/research/publication/magentic-one-a-generalist-multi-agent-system-for-solving-complex-tasks/
https://www.gitkraken.com/solutions/commit-graph
https://doi.org/10.24963/ijcai.2024/890
https://aclanthology.org/2024.acl-long.371
https://aclanthology.org/2024.acl-long.371
https://doi.org/10.1145/3491101.3503564
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1109/TVCG.2024.3456354
https://doi.org/10.1145/3613904.3642216
https://doi.org/10.1145/3613904.3642216
https://doi.org/10.1145/2678025.2701399
https://github.com/langchain-ai/langgraph-studio
https://github.com/langchain-ai/langgraph-studio
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://doi.org/10.1145/1518701.1519023
https://doi.org/10.1145/1866029.1866040
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://ai.meta.com/research/publications/gaia-a-benchmark-for-general-ai-assistants/
https://ai.meta.com/research/publications/gaia-a-benchmark-for-general-ai-assistants/
https://platform.openai.com/playground/
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1109/TVCG.2017.2785807
https://doi.org/10.1145/1866029.1866038
https://doi.org/10.1145/1866029.1866038
https://doi.org/10.1145/3640543.3645144
https://www.promptfoo.dev/
https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/pdb.html
https://doi.org/10.18653/v1/2022.acl-long.230

CHI 25, April 26-May 1, 2025, Yokohama, Japan Epperson et al.

(Pittsburgh, PA, USA) (UIST "24). Association for Computing Machinery, New
York, NY, USA, Article 131, 14 pages. https://doi.org/10.1145/3654777.3676450
[38] Hendrik Strobelt, Albert Webson, Victor Sanh, Benjamin Hoover, Johanna
Beyer, Hanspeter Pfister, and Alexander M. Rush. 2022. Interactive and Visual
Prompt Engineering for Ad-hoc Task Adaptation with Large Language Models.
arXiv:2208.07852 [cs.CL] https://arxiv.org/abs/2208.07852
[39] Ian Tenney, Ryan Mullins, Bin Du, Shree Pandya, Minsuk Kahng, and Lu-
cas Dixon. 2024. Interactive Prompt Debugging with Sequence Salience.
arXiv:2404.07498 [cs.CL] https://arxiv.org/abs/2404.07498
Sandra Wachter, Brent D. Mittelstadt, and Chris Russell. 2017. Counterfactual
Explanations without Opening the Black Box: Automated Decisions and the
GDPR. arXiv:1711.00399 http://arxiv.org/abs/1711.00399
[41] Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen
Zhuge, Jiayi Pan, Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fugiang
Li, Ren Ma, Mingzhang Zheng, Bill Qian, Yanjun Shao, Niklas Muennighoff,
Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert Brennan, Hao Peng, Heng Ji, and
Graham Neubig. 2024. OpenDevin: An Open Platform for Al Software Developers
as Generalist Agents. arXiv:2407.16741 [cs.SE] https://arxiv.org/abs/2407.16741
[42] James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fer-
nanda B. Viégas, and Jimbo Wilson. 2020. The What-If Tool: Interactive Probing
of Machine Learning Models. IEEE Trans. Vis. Comput. Graph. 26, 1 (2020), 56-65.
https://doi.org/10.1109/TVCG.2019.2934619
Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang (Eric)
Zhu, Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Ahmed Awadallah,
Ryen W. White, Doug Burger, and Chi Wang. 2024. AutoGen: En-
abling Next-Gen LLM Applications via Multi-Agent Conversation.
https://www.microsoft.com/en-us/research/publication/autogen-enabling-
next-gen-1llm-applications-via-multi-agent-conversation-framework/
Tongshuang Wu, Ellen Jiang, Aaron Donsbach, Jeff Gray, Alejandra Molina,
Michael Terry, and Carrie J Cai. 2022. PromptChainer: Chaining Large Language
Model Prompts through Visual Programming. In Extended Abstracts of the 2022
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI EA °22). Association for Computing Machinery, New York, NY, USA, Article
359, 10 pages. https://doi.org/10.1145/3491101.3519729
[45] Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld. 2021.
Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improv-
ing Models. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), Chengqing Zong, Fei Xia, Wenjie
Li, and Roberto Navigli (Eds.). Association for Computational Linguistics, Online,
6707-6723. https://doi.org/10.18653/v1/2021.acl-long.523
Tongshuang Wu, Michael Terry, and Carrie Jun Cai. 2022. Al Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (New Orleans, LA, USA) (CHI °22). Association for Computing Machinery,
New York, NY, USA, Article 385, 22 pages. https://doi.org/10.1145/3491102.
3517582
Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu,
Shunyu Yao, Tao Yu, and Lingpeng Kong. 2024. OS-Copilot: Towards Generalist
Computer Agents with Self-Improvement. arXiv:2402.07456 [cs.AI] https:
//arxiv.org/abs/2402.07456
[48]]J.D. Zamfirescu-Pereira, Richmond Y. Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design
LLM Prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI °23). Association for Computing
Machinery, New York, NY, USA, Article 437, 21 pages. https://doi.org/10.1145/
3544548.3581388
Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar,
Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham
Neubig. 2024. WebArena: A Realistic Web Environment for Building Autonomous
Agents. https://openreview.net/forum?id=oKn9c6ytLx

[40

[43

[44

=
&

[47

[49

https://doi.org/10.1145/3654777.3676450
https://arxiv.org/abs/2208.07852
https://arxiv.org/abs/2208.07852
https://arxiv.org/abs/2404.07498
https://arxiv.org/abs/2404.07498
https://arxiv.org/abs/1711.00399
http://arxiv.org/abs/1711.00399
https://arxiv.org/abs/2407.16741
https://arxiv.org/abs/2407.16741
https://doi.org/10.1109/TVCG.2019.2934619
https://www.microsoft.com/en-us/research/publication/autogen-enabling-next-gen-llm-applications-via-multi-agent-conversation-framework/
https://www.microsoft.com/en-us/research/publication/autogen-enabling-next-gen-llm-applications-via-multi-agent-conversation-framework/
https://doi.org/10.1145/3491101.3519729
https://doi.org/10.18653/v1/2021.acl-long.523
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582
https://arxiv.org/abs/2402.07456
https://arxiv.org/abs/2402.07456
https://arxiv.org/abs/2402.07456
https://doi.org/10.1145/3544548.3581388
https://doi.org/10.1145/3544548.3581388
https://openreview.net/forum?id=oKn9c6ytLx

Interactive Debugging and Steering of Multi-Agent Al Systems

A Formative interview details

In our formative study, we conducted semi-structured interviews
where we asked participants the following questions about their
experience developing multi-agent systems:

(1) What task have you been using AutoGen for and why?

(2) How were you solving this task before?

(3) What obstacles and difficulties did you run into while using

AutoGen and authoring multi-agent applications?
(4) How did you solve these difficulties?
(5) Are there any pain points you were unable to solve?

B User study part 2 questions

In the second part of our user study, we asked participants quanti-
tative ratings questions along with open-response questions. The
ratings questions collected via a survey were:
(1) How much experience do you have developing Al agents?
(5 point Likert)
(2) Do you have prior experience using autogen or agnext?
(Yes/No)
(3) Do you have prior experience with the GAIA benchmark?
(Yes/No)
(4) Ifound this system helpful (5 point Likert)

CHI ’25, April 26-May 1, 2025, Yokohama, Japan

(5) Ifound this system easy to use (5 point Likert)

(6) I would like to use this system again in the future (5 point
Likert)

(7) Rate how much you found this feature helpful: Sending new
messages (5 point Likert)

(8) Rate how much you found this feature helpful: Backtracking
to previously sent messages and editing (5 point Likert)

(9) Rate how much you found this feature helpful: Conversation
overview visualization (5 point Likert)

After completing the task, the participants in study 2 were asked

the following open-response questions in the interview:

(1) (Ifdid not steer to right answer) Given more time, do you think
you would have been able to steer the models to output the
correct answer?

(2) Can you describe your approach to the task, how did you
try to intervene?

(3) After intervention, how has your opinion about which issues
are the most actionable changed?

(4) How did you feel that having the ability to edit messages and
configuration influenced your understanding of the agents’
errors?

(5) What other ways would you have liked to steer the models?

	Abstract
	1 Introduction
	2 Related Work
	2.1 Multi-Agent AI Systems
	2.2 LLM and Agent Debugging

	3 Background: Agent Framework and Tasks
	3.1 Agent Implementation Framework
	3.2 GAIA Benchmark Tasks
	3.3 Agent Team for GAIA Tasks

	4 Formative Interviews on Agent Debugging
	4.1 Understanding Long Agent Conversations is Cumbersome
	4.2 Lack of Support for Interactive Debugging
	4.3 Iterating on Agent Configuration
	4.4 Design Goals

	5 AGDebugger: Interactive Agent Debugging
	5.1 Message Sending and History
	5.2 Message Resetting and Edits
	5.3 Conversation Overview Visualization
	5.4 Agent Configuration

	6 User Study
	6.1 Study Design
	6.2 Part 1 Findings: Error Identification
	6.3 Part 2 Findings: AGDebugger Facilitates Interactive Steering and Debugging
	6.4 Three User Approaches to Steer Agents
	6.5 User Study Limitations

	7 Discussion
	7.1 Open Challenges for AI Agent Steering
	7.2 Future Directions for Multi-Agent Debugging

	8 Conclusion
	Acknowledgments
	References
	A Formative interview details
	B User study part 2 questions

