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Fig. 1: In AutoProfiler, data profiles update whenever the data in memory updates and are sorted with the last updated dataframes at 

the top. In this example, a user has (1) loaded a dataframe about housing prices and sees the profile for df in the sidebar. (2) The user 

then investigates the price column and exports a chart to code so they can persist this chart and tweak the code for follow-up analysis. 

Abstract— Profiling data by plotting distributions and analyzing summary statistics is a critical step throughout data analysis. Currently, 

this process is manual and tedious since analysts must write extra code to examine their data after every transformation. This 

inefficiency may lead to data scientists profiling their data infrequently, rather than after each transformation, making it easy for them to 

miss important errors or insights. We propose continuous data profiling as a process that allows analysts to immediately see interactive 

visual summaries of their data throughout their data analysis to facilitate fast and thorough analysis. Our system, AutoProfiler, presents 

three ways to support continuous data profiling: (1) it automatically displays data distributions and summary statistics to facilitate data 

comprehension; (2) it is live, so visualizations are always accessible and update automatically as the data updates; (3) it supports follow 

up analysis and documentation by authoring code for the user in the notebook. In a user study with 16 participants, we evaluate two 

versions of our system that integrate different levels of automation: both automatically show data profiles and facilitate code authoring, 

however, one version updates reactively (“live”) and the other updates only on demand (“dead”). We find that both tools, dead or alive, 

facilitate insight discovery with 91% of user-generated insights originating from the tools rather than manual profiling code written by 

users. Participants found live updates intuitive and felt it helped them verify their transformations while those with on-demand profiles 

liked the ability to look at past visualizations. We also present a longitudinal case study on how AutoProfiler helped domain scientists 

find serendipitous insights about their data through automatic, live data profiles. Our results have implications for the design of future 

tools that offer automated data analysis support. 

Index Terms—Data Profiling, Data Quality, Exploratory Data Analysis, Interactive Data Science. 

1 INTRODUCTION 

In recent decades, data analysis is no longer bottlenecked by the tech-
nical feasibility of executing queries against large datasets, but by the 
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difficulty in choosing where to look for interesting insights [5]. Interac-
tive programming environments such as Jupyter notebooks help since 
they support fast, flexible, and iterative feedback when programming 
with data [2, 33]. However, while these coding tools were designed 
to track the state of program execution and variables for debugging, 
they were not inherently designed to track how data is manipulated and 
transformed. This forces users to manually make sense of and write 
additional code to explore their data. 

Exploratory Data Analysis (EDA) is critical to understanding a 
dataset and its limitations and is a common task at the beginning of a 
data analysis [47, 49]. Yet the manual effort required to construct data 
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profiles for EDA takes up a significant part of data analysts’ time: recent 
surveys of data scientists show that they spend almost 50% of their time 
just cleaning and visualizing their data [3]. Since data profiling is so 
time intensive, it is easy for users to skip over important trends or errors 
in their data. This can lead to negative downstream consequences when 
this data is used for modeling and decision-making [41]. In particular, 
many data quality issues are potentially silent: models will still train or 
queries will execute, but the results will be incorrect [16]. For example, 
in the data profile of apartment prices in Figure 1 we can see that some 
apartment prices have negative values. If these values are not addressed, 
analyses or models that use this data may lead to wrong decisions. 

We propose continuous data profiling as a process that allows an-
alysts to immediately see interactive visual summaries of their data 
throughout their data analysis to facilitate fast and thorough analysis. 
To explore how automated tools can best support continuous data pro-
filing, we have built a computational notebook extension AutoProfiler 
that tightly integrates data profiling information into the analysis loop. 
AutoProfiler maintains the advantages of the interactive notebook pro-
gramming paradigm, while giving users immediate feedback on how 
their code affects their data. This tightens the feedback loop between 
manipulating data and understanding it during data programming. 

We explore three main features in AutoProfiler. First, it automati-
cally displays profiling information about each dataframe and column 
to facilitate data understanding. By showing data distributions and 
summaries, AutoProfiler jump-starts a user’s EDA. Second, when the 
data in memory updates, the profiling information updates accordingly. 
“Live” updates in user interfaces have been shown to reduce iteration 
time [27]; with AutoProfiler we apply this concept to data profiling to 
understand how it helps facilitate data understanding. Third, although 
AutoProfiler eliminates the repetitive work of authoring data profiling 
code, users still need to be able to conduct flexible follow-up analysis 
and persist interesting findings in their notebook [40]. AutoProfiler 
supports this by authoring code for the user through code exports to 
help users quickly select subsets, find outliers, or author charts. 

We present two complimentary evaluations of AutoProfiler. In a 
user study with 16 participants, we evaluate two levels of automated 
assistance to see how different versions of the tool help users find errors 
and insights in their data. Half of the participants used AutoProfiler 
(a “live” profiler) and the other used a version that presents the same 
information but in a static, inline version (which we denote as “dead”). 
In this evaluation, we found that users experience similar benefits from 
both versions of the tool, “dead” or “live”, and generate 91% of findings 
from the tools as opposed to their own code. Participants found live 
updates intuitive and felt it helped them verify their transformations 
while those with static profiles liked the ability to look at past visual-
izations. Furthermore, participants described how the systems sped up 
their analysis and exports facilitated a more fluid analysis. In our sec-
ond evaluation, we conducted a long-term deployment of AutoProfiler 
with domain scientists to use the system during their analysis. These 
users described how the “live” system enabled them to find and follow 
up on interesting trends and how AutoProfiler facilitated serendipitous 
discoveries in their data by plotting things they might not have checked 
otherwise. We discuss how future automated assistants can build on 
AutoProfiler to augment data programming environments. In summary, 
our paper makes the following contributions: 

1. We demonstrate the benefits of continuous data profiling with 
AutoProfiler, which supports data programming with automatic, 
live profiles and code exports. 

2. We evaluate this tool in a controlled study and demonstrate how 
continuous profiling helps analysts discover insights in their data 
and supports their workflow. 

3. We also present a longitudinal case study demonstrating how 
AutoProfiler leads to insights and discoveries during daily analysis 
workflows for scientists. 

2 RELATED WORK 

Our work builds on prior literature on assisted data understanding, live 
interfaces, and linking GUI and code interfaces. 

2.1 Data understanding is critical yet cumbersome 
Understanding data and its limitations has long been an important, but 
often overlooked, part of analysis. Tukey was an early advocate for plot-
ting distributions and summary statistics to get to know your data before 
confirmatory analysis (hypothesis testing) began [47]. Current best 
practices taught in introductory statistics courses still emphasize the 
importance of starting analysis with summaries of individual columns, 
such as distributions and descriptive statistics, before moving on to plot 
combinations of columns or investigating correlations [42]. Recent re-
search has highlighted how with the increasing emphasis on developing 
AI models, people often undervalue data quality leading to negative 
downstream effects [41]. Multiple surveys of production data scientists 
describe the difficulty and time spent on data understanding, profiling, 
and wrangling [3, 19, 24]. For example, a recent Anaconda foundation 
survey described that data scientists self-reported spending almost 50% 
of their time on data cleaning and visualization [3]. 

Data understanding is difficult because of a variety of factors, includ-
ing that data updates quickly in production environments, so automated 
methods and alerts have a high number of false positives [43], current 
popular tools require manual data exploration and become messy [33], 
and as datasets have grown, there are a large number of issues to check 
for. Prior systems in the visualization community have addressed parts 
of this space such as comparing data over time as models are trained 
on subsequent data versions [18] or methods for cleaning up notebooks 
during analysis [14]. However, more work is needed to understand how 
tools can facilitate discovering data and potential quality issues before 
they propagate to downstream models or analyses. 

2.2 Prior assisted and integrated EDA tools 
Prior visualization systems aim to automate the visual presentation of 
data to speed up data understanding. In general, this automation helps 
alleviate the burden of specifying charts so that users can focus more 
on insights rather than how to produce a specific chart [15]. Some 
systems automate visual presentation and then rank charts according 
to metrics of interest such as high correlation [8], charts that satisfy a 
particular pattern in the data [45], or contain attributes of interest [50]. 
Closely related to our work is the Profiler system, which checks data for 
common quality issues such as missing data or outliers, and presents 
potentially interesting charts to the user [20]. 

However, many of these systems exist in standalone tools, making 
them difficult to integrate into flexible data analysis workflows in pro-
gramming environments like Jupyter notebooks [2]. Other systems 
have explored how to integrate visualization recommendations in the 
notebook programming context as well through visualization callbacks, 
libraries, embedded widgets, and similar notebook search [26, 34]. 
Lux [25] and other open source tools [1, 6, 30, 31, 39] show EDA infor-
mation on demand for individual Pandas dataframes. While Lux uses 
“always on” visualization recommendations to overwrite the default ta-
ble view for pandas dataframes, users must still ask for visualizations by 
calling a dataframe explicitly. Diff in the Loop [48] presents a paradigm 
for automatically visualizing the differences between dataframes after 
each step in an analysis. Although these prior systems use automatic 
visualization, they still require the user to manually ask for this in-
formation after each data update and often present an abundance of 
information that can be difficult to compute in reactive times and for 
users to parse quickly. With AutoProfiler, we explore the benefits and 
design constraints around coupling automatic visualization with live 
updates and code authoring on the user’s behalf. 

2.3 Liveness in user interfaces 
Fast iteration on data and models is a key element to effective data 
science [11, 43]. The fast, incremental feedback that users receive in 
Jupyter notebooks is part of the popularity of the platform [10, 33], 
yet the default presentation of data feedback in Jupyter is limited to a 
handful of rows. “Liveness” in user interfaces reduces iteration time 
through reactive updates [27], such as in spreadsheets [17]. Prior studies 
of liveness in data science tools have compared live interfaces to REPL 
(read-eval-print-loop) interfaces like Jupyter and found users like the 
responsiveness and clean coding that live interfaces afford [7]. Inspired 



by the affordances of live, reactive updates, AutoProfiler evaluates how 
automatically updating data profiles after a user changes their data can 
help reduce iteration time during analysis. When using AutoProfiler 
in Jupyter, users must still explicitly execute their code to manipulate 
the data, thus it is not a completely “live” environment. However, data 
profiles reactively update when data changes. 

2.4 Linking code and GUI interactions 
There is a tradeoff between tools that support using code to interact with 
data or direct manipulation. Programming languages are flexible and 
expressive, yet GUIs are responsive and easy to use [2]. Prior systems 
in the notebook setting have bridged this gap by writing interactions 
with a chart [51] or widget [22] back to the notebook automatically. 
This allows users to reuse analysis code and preserves the steps of 
their analysis. Selection exports in AutoProfiler serve a similar purpose 
of facilitating drill down into rows of interest in a dataset. Our code 
authoring approach differs from prior systems since we only write code 
to the notebook explicitly when the user asks, rather than implicitly 
after every interaction to avoid polluting the user’s notebook. 

Beyond their flexibility, programming languages remain popular 
for data science because they allow users to reuse old analysis code 
for new purposes [21], or use analysis “templates” to help users go 
through the same steps of analysis for similar tasks [10]. AutoProfiler’s 
template exports serve a similar purpose to author code in the notebook 
and support follow-up analysis for tasks like customizing a plot, doing 
outlier analysis, or investigating duplicates. 

3 DESIGN GOALS 

We developed the following design principles to inform our system 
requirements and design: 
G1: Automatic & Predictable: Basic data profiling information should 

be visualized automatically without any need for extra code in a 
consistent manner. 

G2: Live: When the data updates, so should all visualizations of it. 
This prevents “stale” data visualizations in a notebook and allows 
data profiles to be accessible throughout an analysis. 

G3: Non-intrusive: Since users are writing code to interact with their 
data, automatic visualization should not interfere with their flow. 

G4: Initiate EDA: Data profiles should present a starting point for 
understanding each column, which can inform follow-up analysis. 

G5: Persistence: Tools should support writing findings to the notebook 
to enable reproducible and shareable analysis. 

G1 and G2 were motivated by the manual EDA which is the current 
status quo in notebook programming. We build on prior techniques 
in live interfaces [27] and automatic visualization [15, 25] to speed up 
the data profiling process and enable continuous data profiling. This 
eliminates the need to write repetitive profiling code to understand 
dataframes after each update. Importantly, we show the same profiling 
information for each type of column and visualize the data “as is” in 
order to facilitate finding issues (G1). With live updates, we situate 
our profiler alongside the programming environment rather than inline 
(G3) so that it does not take programmers out of their analysis flow [12]. 
This also helps declutter the programming environment since most 
preliminary visualization can be done in the sidebar. We make the 
design choice to show univariate profiling information to help users 
jump-start their EDA process (G4). Previous profiling systems often 
require scrolling to look through multiple pages of charts [25, 30], 
making it hard to find interesting problems or insights. Our goal is to 
facilitate rapid data understanding with data profiles, then allow users 
to do further custom analysis by handing off their analysis back to code 
through exports. Code exports also facilitate saving findings such as 
charts or code snippets to the notebook so that notebooks can be shared 
and reproduced (G5), a core goal in notebook data analysis [40]. 

4 CONTINUOUS DATA PROFILING WITH AutoProfiler 
AutoProfiler provides data analysts rapid feedback on how their code 
affects their data to speed up insight generation. The system fits into 
a common existing workflow for analysis: using Pandas in Jupyter. 

Pandas is the most popular data manipulation library in Python, with 
millions of downloads every week [29]. Likewise, computational note-
books in Jupyter have become the tool of choice for data science in 
Python [33]. AutoProfiler focuses on Pandas users in Jupyter with the 
goal that features that support this workflow will generalize to other 
dataframe libraries such as Polars [36] or Arrow [4], as well as other 
notebook programming environments. The AutoProfiler system has 
three core features that enable continuous data profiling: automatic 
visualization (§ 4.1), live updates (§ 4.2), and code exports (§ 4.3). 

4.1 AutoProfiler shows EDA automatically 
AutoProfiler detects all Pandas dataframes in memory and presents 
them in the sidebar of the notebook. Each dataframe profile can be 
shown or hidden, along with more information about each column. 
This allows users to drill down into dataframes and columns of interest 
to see more information, providing details on demand. By situating 
AutoProfiler in the sidebar it also allows users to simultaneously look at 
both summary data profiles of their data in AutoProfiler and the default 
instance view inline from Jupyter. 

We use the Pandas datatype of the column to show corresponding 
charts and summary information. We categorize the Pandas datatypes 
into semantic datatypes of numeric, categorical, or timestamp columns 
similar to previous Pandas visualization systems [9, 25]. Column pro-
files for each of these three data types are shown in Figure 2. Each 
column profile has three core components: 

1. Column Overview which contains the name, data type, a small 
visualization, and the percentage of missing values. 

2. Column Distribution which is shown by clicking on the overview 
to reveal a larger, interactive visualization of column values. 

3. Column Summary that has extra facts about a column such as the 
number of outliers or duplicate values. 

The overview, distribution, and summary shown depend on the data 
type of the column. Furthermore, the distribution and summary can be 
toggled on and off to show more details on demand [44]. This is impor-
tant for large dataframes with many columns, or when there are many 
dataframes in memory to prevent unncessary scrolling. Many visual 
elements show hints on hover to further prevent visual clutter, provid-
ing further details on demand. Our core charting components were 
adapted from the open-source Rill Developer platform which shows 
data profiles for SQL queries [38]. We use the same visualizations in 
AutoProfiler with extra summary information and linked interactions to 
connect the profile to the notebook. 

Quantitative Columns: For quantitative columns like integers and 
floats, we show a binned histogram so that users can get an overview of 
the distribution of the column. This histogram is shown in the column 
overview as a preview; a larger and interactive version is presented 
upon toggling the column open. On hover, users can see how many 
points are in each bin. We also show numerical summary information 
like the min, mean, median, and max of the column. This is similar 
to what is presented in the describe() function in Pandas to give a 
numeric summary of a column. In Figure 2 (left), we demonstrate 
this information for a price column where we can see that some of the 
prices in this distribution are negative, a potential error that should be 
inspected during analysis. 

If users want to see more information, they can toggle the summary 
to see potential outliers, whether the column is sorted, and the number 
of positive, zero, and negative values. We use two common heuristics 
to detect outlier values. The first is if a value is greater than 3 standard 
deviations from the mean; the second is if a point falls outside of 
1.5 ⇤ IQR away from the first or third quartile. Both forms of outlier 
detection code can be exported to code which allows users to investigate 
potential outliers more or change these thresholds for classifying the 
outliers with their code manually. 

Categorical Columns: For categorical or boolean columns, we 
first show the cardinality of the column in the overview to let users 
understand the total number of unique values. Once toggled open, the 
distribution view shows the frequency of the top 10 most common 
values. This is similar to the commonly used value_counts() function in 



Fig. 2: AutoProfiler shows distributions and summary information depending on the column type. For quantitative columns, we show a binned 

histogram along with summary statistics. On hover, the user can see the count in each bin or export the selection to code. We also show a summary 

with extra information like potential outliers that can be exported to code. For categorical columns like strings or boolean values, we show up to the 

top 10 most frequent values. On click, the selection can also be exported to code. For temporal columns, we show the count of records over time 

and the range of the column. 

Pandas which shows the count of all unique values. In the categorical 
summary, we show extra information about the character lengths of 
the strings in the column along with a more detailed description of 
the column’s uniqueness. This uniqueness fact can be exported to 
code which lets users inspect duplicated data points. Once again, users 
can export a selection to code in the notebook to quickly filter their 
dataframe. For example, in Figure 2 (center) we show the information 
for the categorical column “county”. This column has some default 
values of "---" that seem like an error, so a user can click “Export 
rows to code” to have the code df[df.county == "---"] written to their 
notebook and can investigate these rows further. Once this new code 
is written to the notebook, the user can look at this subselection in 
AutoProfiler or with their own Pandas code. 

Temporal Columns: Our last semantic data type is for temporal 
columns, where we also show a distribution overview so users can see 
the count of their records over time. In the larger distribution view, 
users can hover over this chart to see the count of values at a particular 
point in time. We also show the range of the column and if the column 
is sorted or not. Users can drag over a selection of the column to 
zoom into the time range more in the visualization. We plan on adding 
selection exports to temporal columns in the future. In Figure 2 (right), 
we show the profiling information for a date column where a user can 
observe that the records in their dataset span 17 years, however are not 
evenly distributed with large spikes in certain years such as early 2012. 

4.2 Live Data Profiles 
Beyond showing useful data profiling information just once, AutoPro-
filer updates as the data in memory updates. Once a new cell is executed, 
AutoProfiler recomputes the data profiles for all Pandas dataframes in 
memory and updates the charts and statistics as necessary in the inter-
face. With live updates, AutoProfiler always shows the current state of 
all dataframes currently in memory in the notebook, allowing users to 
quickly verify if transformations have expected or unexpected effects 
on their data. Figure 3 shows this update when a string column is parsed 
to numeric. Here, Pandas initially parses this column as an object data 
type but when the user turns the column into an integer the distribution 
and summary information is updated. Live updates help users verify 
a wide range of transforms. For example, after updating the types of 
columns, applying filters, or dropping “bad” values. 

AutoProfiler has several UI elements to help users track and assess 
changes after updates. The first is that when a user hovers over a 
column in any dataframe, if other dataframes have columns with the 
exact same name they are highlighted. For example, if a user takes 
the dataframe df, filters it to df_filtered, and then hovers on the Price 
column the linked highlights help the user make a visual connection 
between the two Price columns. With automatic dataframe detection 
and visualization, there can potentially be many dataframes in memory 

as users manipulate their data over an analysis. AutoProfiler supports 
sorting dataframe profiles to find those of interest. By default, the most 
recently updated profiles are shown at the top of the sidebar. A user 
can also sort alphabetically by the dataframe name. Furthermore, users 
can pin any profile so that it always appears at the top of the sort order. 

Dataframe profiles are typically only shown for dataframes explicitly 
assigned to a variable with one exception: if the output from the most 
recently executed cell is a Pandas dataframe we will compute a profile 
for it with the name “Output from cell [5]”. On the next cell execution, 
these temporary profiles are removed. This fits into a common note-
book programming workflow where users display their dataframe after 
making a transformation to see how the data has changed. 

4.3 Exports to code 
In addition to interactive data profiles, AutoProfiler assists users in 
authoring code. AutoProfiler facilitates code creation in two ways: 
selection and template code exports. For both of these, a user clicks 
on a button or part of a chart and AutoProfiler writes code for them in 
the notebook below the user’s currently selected cell. All code export 
snippets are pre-built into AutoProfiler and produce the same code 
snippet for each task with the dataframe and column names filled in so 
the code is ready to execute in the notebook. 

Selection and template exports only differ in the kind of code they 
produce. Selection exports allow users to export selections from charts 
to help them filter their data, as mentioned in § 4.1. For example, 
Figure 2 (left and center) demonstrates how a user can export selections 
from categorical and numeric charts to quickly filter their data. This 
helps users more quickly iterate on ideas during analysis to spend less 
time writing simple code and proved very popular in our user study. 

AutoProfiler authors more complex code like charts or code to detect 
outliers with template exports. Code exports for these tasks are still 
relatively simple, only exporting up to 10 lines of code. However, this 
saves users from having to remember how to author a chart themselves 
or compute outliers. Users can then easily edit this code, for example 
to customize their visualization or change the threshold for an outlier. 
Prior work has discovered how data scientists often re-use snippets of 
code across analyses to help them speed up their workflows [10, 21]. 
AutoProfiler’s exports serve as a form of these pre-baked “templates” 
for analysis steps. The other benefit of this type of export is that it helps 
preserve analysis in the notebook in the form of code, which supports 
more replicable analyses in notebooks, a common goal [35]. 

This linking between analysis in a visual analytics tool and notebook 
code has been introduced in previous systems such as Mage [22] and 
B2 [51]. Our goal here is similar: to support tight integration between 
GUI and code. However, our approach differs slightly in that we only 
write code to the notebook when the user explicitly clicks a button to 
prevent polluting the user’s working environment. 



Fig. 3: AutoProfiler updates the data profiles shown as soon as the data 

updates. In this example, Pandas parses the sqft column as a string 

type since some of the values initially have strings in them. Once the 

dataframe df updates in memory, AutoProfiler will update the profile 

shown. This way the user can see their transformation was successful, 

inspect the distribution of sqft, and even notice that the number of nulls 

increased by 0.3% after this parse. 

4.4 Implementation and Architecture 
AutoProfiler is built as a Jupyter Lab extension to augment a normal 
interactive programming environment with a data profiling sidebar. 
Figure 4 shows the components involved in a example live update loop. 
When a user executes new code, the kernel sends a signal that a cell 
was executed (step 1). AutoProfiler then interacts with the kernel to get 
all variables that are Pandas dataframes, and requests data profiles for 
each of these variables (steps 2 - 4). When a user requests to export 
code, a new cell is created with the code (step 5). This is only a UI 
interaction, and when the user executes the generated cell, the update 
loop will trigger again. Whenever the kernel is restarted, the dataframes 
in memory are cleared so the profiles in AutoProfiler reset. 

As a Jupyter extension, AutoProfiler can be easily installed as a 
Python package and included in a user’s Jupyter Lab environment. This 
easy installation has proven very popular with users of our system. The 
frontend code for AutoProfiler uses Svelte [46] for all UI components. 
Our code is open-sourced and available for use 1 . 

All profiling functions are written in Python and execute code in 
Pandas. Pre-binning distributions in python makes serialization faster 
to avoid serializing entire dataframes. Since our profiling happens 
in Pandas, the performance of AutoProfiler generally scales with the 
capabilities of Pandas. Anecdotally, we have used AutoProfiler during 
analyses with dataframes with hundreds of thousands of datapoints and 
updates remain responsive. 

The scalability of our approach is primarily impacted by two main 
considerations: the number of columns in each dataframe and number 
of dataframes in memory. Pandas can still execute a single query 
relatively quickly for dataframes with up to millions of datapoints, and 
we consider a full benchmarking of pandas queries outside the scope 
of this work. Since requests to the Jupyter python kernel are currently 

1https://github.com/cmudig/AutoProfiler 

Fig. 4: AutoProfiler profiling workflow. Data profiles are computed reac-

tively when a user executes new code. Profiling is done in the kernel to 

speed up performance and avoid serializing the entire dataframe. 

executed serially, larger requests for dataframes with many columns or 
more dataframes in memory make updates slower. The AutoProfiler UI 
is not affected by the size of the underlying data since the queries return 
binned data counts or summary statistics so the UI remains responsive, 
it simply takes longer to fetch new data for larger or more dataframes. 
We have included several performance tweaks to make AutoProfiler 
usable for real workflows. For example, we do not calculate updates 
when the AutoProfiler tab is closed to avoid unnecessary computation. 

The scalability of AutoProfiler can be improved with further engi-
neering. For example, the requests for profiling queries could be exe-
cuted in parallel by augmenting the Jupyter kernel. Furthermore, faster 
query execution system like DuckDB [37] can speed up the response 
on individual queries over pandas. For particularly large datasets, the 
distributions and statistics could be estimated from samples. 

5 EVALUATION: USER STUDY 

We demonstrate the effectiveness of AutoProfiler in two ways. In this 
section, we discuss the results of a user study comparing two levels of 
automation support with AutoProfiler and in § 6  we discuss the results 
of a longitudinal case study of users with AutoProfiler. 

5.1 Participants 
To evaluate how AutoProfiler helps data analysts in a sample data 
analysis task, we recruited Pandas and Jupyter users for a between-
subjects user study. We recruited 16 participants from social media 
and our networks who were experienced data analysts. Our inclusion 
criteria required that participants be regular Pandas and Python users. 
Our participants had 2 to 12 years of experience doing data science 
(mean 4.8 years), and were all regular Python and Pandas users who 
frequently used Juptyer. The typical participant reported doing data 
analysis weekly and using Pandas daily, with all participants using Pan-
das at least monthly. Our participants worked in a variety of industries 
including autonomous vehicles, data journalism, and finance with job 
titles including data analyst, data engineer, post-doc, and researcher. 

5.2 Research Questions 
We had three primary research questions in our user study: 
Q1. Live updates: Does a profiler with live updates lead to more 

insights found than one with manual updates? 
Q2. Starting point for EDA: Does automatically providing visual data 

profiles lead users to write less code, and is this information 
helpful? 

Q3. Linked code and GUI: How does code exporting facilitate handoff 
for follow-up analysis? 

These research questions correspond to the main features of our tool. 
We test how different levels of automation support continuous data 

https://github.com/cmudig/AutoProfiler


No. Type Category Origin Description Found Found with tool 

1 Missing Error Inherent Small number of missing values in county, beds, title 56% 100% 
2 Missing Error Inherent Mostly missing in baths, sqft, description 56% 100% 
3 Inconsistent Error Added City has values that are lower and upper case 69% 91% 
4 Inconsistent Error Added Negative prices 69% 100% 
5 Incorrect Error Inherent Date could be parsed to DateTime format 63% 90% 
6 Incorrect Error Added County has default values of "---" 81% 85% 
7 Incorrect Error Added Sqft has string values and should be converted to an int 69% 82% 
8 Outliers Error Inherent Outliers in sqft 6% 100% 
9 Outliers Error Inherent Outliers in price 44% 100% 
10 Schema Error Added Duplicate datapoints (duplicate post_ids) 38% 100% 
11 Distribution Insight Inherent Room_in_apt is almost all 0 56% 100% 
12 Scope Insight Inherent Dataset is only apartments in California 31% 100% 
13 Correlation Insight Inherent Inspect correlations between any variable and price 13% 0% 

14 Distribution Insight Inherent Data is not evenly distributed across years 38% 100% 
15 Inconsistent Error Inherent Year and date column correspond (ensure consistency) 19% 67% 
16 Inconsistent Error Inherent The price is not properly extracted from title for some rows 6% 0% 

Table 1: Description of each of the errors and insights on our “rubric” of participant performance. We include the percentage of participants that 

discovered each error/insight, noting that some discoveries were found far more often than others. As the same information was present in both 

AutoProfiler and StaticProfiler, the discovery rate in each condition is largely comparable. The first 13 insights and errors were things we expected 

participants to discover ahead of time, and the last 3 were valid extra findings discovered by participants. 

profiling for Q1 by comparing the number of insights found through 
a profiler with live updates to one that required manual invocation. 
With Q2, we explore our design choice of showing a starting point for 
data profiling. To answer this question we measure how many insights 
participants found through our tools versus their own code and their 
qualitative perceptions of each tool version. Finally, to answer Q3 
we measured how often exports to code are used during analysis and 
participants’ perceptions of this feature. 

In order to answer these research questions, we ran a between-
subjects user study with two versions of our tool. We elected for a 
between-subjects design since data analysis requires time to do well and 
we found during pilots that having participants analyze two separate 
datasets was infeasible and the quality of analysis on the second task 
was significantly worse. We also noticed a large learning effect in pilot 
studies when participants analyzed two datasets back to back. 

5.3 StaticProfiler 
In our study, one condition used AutoProfiler with live profiles, auto-
matic updates, and code exports. For our other condition, participants 
used a static version of the tool which we call StaticProfiler which re-
quires manual invocation. StaticProfiler allows us to test how different 
levels of automation support continuous data profiling. The interface 
shows the exact same information as AutoProfiler, however, it must 
be called manually with plot(df) and does not update automatically 
with data updates. The same profiles for each column are presented 
in an inline interactive widget with the ability to hand off to code in 
the notebook. This sort of manual invocation is similar to other Pan-
das visualization tools in notebooks [1, 25, 30]. A screenshot of the 
StaticProfiler tool is included in the appendix. 

We compare AutoProfiler with StaticProfiler rather than other open 
source tools since StaticProfiler includes largely the same information 
as other tools but the UI design is the same as AutoProfiler. Our goal 
with this comparison was to isolate the effects that live updates have on 
continuous data profiling (Q1) and evaluate Q2 and Q3 through logs 
and interviews across both system versions. We compare AutoProfiler 
to a non-live updating tool, StaticProfiler, instead of a baseline of no 
tool since participants could write any extra code in the study notebook 
and did not have to use the tools. This allowed us to evaluate how 
different designs impacted tool use and how a tool augmented a typical 
programming workflow. 

5.4 Procedure and Task 
In both conditions, participants were first shown a demo of the tool 
version they would be using (AutoProfiler or StaticProfiler). Each 
participant then analyzed the same dataset during the task. The dataset 

was a sample of a larger dataset of apartment listings from craigslist [32] 
with extra “errors” added2 . The task dataset had 1,942 rows and 13 
columns. We sampled the dataset to a smaller size so we could be more 
confident that our rubric covered the majority of important insights and 
errors in the data. 

We had 13 pre-known insights/errors that we measured to see how 
well participants could explore the data and find these insights as an 
inital “rubric” of task performance. Additionally, we included three 
extra insights and errors that participants found during their exploration. 
A detailed description of each insight/error that we measured is in Ta-
ble 1. The categories of errors in this dataset were inspired by prior 
studies that group dataset errors into common types [20]. Our first 10 
dataset errors are issues of missing data, inconsistent data, incorrect 
data, outliers, and schema violations. Inconsistent data refers to data 
with inconsistencies like variations in spelling or units; incorrect data is 
parsed as the wrong data type or has default values like dashes or empty 
strings. In addition to errors that might jeopardize an analysis if not 
discovered, we also measured how well participants discovered several 
broader insights in the dataset. Building off past definitions of dataset 
insights as unexpected, qualitative findings rooted in the data [28], we 
broadly considered insights as findings about the data that did not fit 
into one of the aforementioned error buckets and are important to know 
before the dataset is used for a downstream task. We initially included 
three general insights such as the scope of the dataset, realizing skewed 
distributions, and investigating correlations. While these errors/insights 
are by no means exhaustive of everything of interest in our dataset, they 
provide a common “rubric” that we could evaluate participants against. 
We consider this rubric indicative of things that should be found in a 
proper EDA of the dataset, regardless of the tool being used. With the 
exception of insight 13 about correlations, all of these findings can be 
seen in the AutoProfiler or StaticProfiler interfaces. 

Participants were asked to explore and clean the data under the 
guidance that this dataset was recently acquired by a colleague who 
wants to build a predictive model of apartment prices. Participants were 
asked to clean and produce a report about the dataset in the notebook 
that would be handed off to their colleague. Participants were told there 
were at least 10 errors in this dataset that they should try to find and 
fix to encourage critical engagement with the data. They were not told 
what kind of errors these were or what constituted an error. 

Participants were given 30 minutes to explore the data with the tool 
and asked to think aloud about what they were investigating. Partic-
ipants were asked to write down any insights and findings in their 
notebooks and voice them aloud. During their analysis, they were free 

2Task dataset: https://github.com/cmudig/AP-Lab-Study-Public 

https://github.com/cmudig/AP-Lab-Study-Public


to look up external documentation and use any other python libraries 
they thought might be helpful. Our research team was present if par-
ticipants had questions about the task overall, however, did not answer 
questions about the data. We automatically logged interactions with 
the tools during the study. Afterward, we conducted semi-structured 
interviews with each participant and asked them about how they went 
about the task and how the tool supported their analysis. We examined 
the findings that participants wrote down in the notebook or voiced 
aloud from study recordings to quantify how many of the insights on 
our rubric they had found. In Sections § 5.5, § 5.6, and § 5.7 we discuss 
findings based on these logs and interview data. 

Fig. 5: Usage and task performance metrics of AutoProfiler and Stat-
icProfiler from our user study. 

5.5 Live profiles do not lead to more insights but make 
verification easier 

In both conditions, participants found a similar number of insights: on 
average, 6.9 with StaticProfiler and 7.4 with AutoProfiler out of the 16 
we measured (P=0.71). Therefore, we did not observe more insights 
found with AutoProfiler (Q1). Participants heavily used both versions 
of the tool as demonstrated by the similar number of unique dataframes 
and columns explored in Figure 5. We suspected the live updates in 
AutoProfiler to encourage more tool use which would lead to more 
insights found but participants found both versions to be helpful during 
their analysis task, reinforcing the value of automatic visualization. 
Furthermore, live updates may not have made as much of a difference 
in a controlled lab setup versus a less well-defined analysis outside of 
the lab setting which we explore in § 6. 

Participants used both versions of the tools to verify that their code 
had the expected effect on a dataframe. For example, we observed 
participants finding an error through the tool, writing code to fix it, and 
then checking that their code had the expected effect through the tool. 
We particularly noticed this pattern with users of AutoProfiler. For 
example, P3 noticed error #3 that the city column contained some cities 
that were spelled with different casings (“Oakland” and “oakland”) 
with the column detail view. They then fixed this error by making all 
the values upper case with their own Pandas code and verified that the 
top values were all upper case in AutoProfiler. As P3 described: 

“It was nice to see when I do the upper [casing] and I can 
just see, oh that worked. When I do the drop duplicates, I 
can just look and see like, oh that worked. I like that.” 

We observed this (1) find a dataset error, (2) fix, and (3) verify in the 
tool loop for many of our participants. Live updates help facilitate this 
verification since the updates happen automatically, whereas with the 
static version of the tool, users would often verify transformations with 
their own code manually. As P7 (StaticProfiler) mentioned: “I only 

want [StaticProfiler] when I’m ready for it. Because it does take up 
some screen space. Like I don’t want it like suddenly bumping a bunch 
of things out of the way.” Since StaticProfiler puts visualizations inline 
in the notebook, multiple invocations can lead to cluttered notebooks. 

Both AutoProfiler and StaticProfiler also helped participants quickly 
discover when they had done a transformation incorrectly. For example, 
P5 used AutoProfiler to export the outliers for the beds column to code. 
However, when they re-assigned their dataframe variable, they assigned 
df to only contain outliers by accident. With AutoProfiler they quickly 
noticed that their dataframe now only contained 12 data points with 
extreme distributions and were able to fix their error. We observed this 
pattern of the tool helping find user errors during four different studies, 
three of which were using AutoProfiler. 

Using static, inline data profiles is not without its advantages. For 
one, several users liked the ability to keep a history of past dataframes 
in their notebook when they called plot() with StaticProfiler. Although 
some participants felt this led to potentially cluttered notebooks, it 
can be useful to scroll back to an earlier version of the data. This is 
not possible in AutoProfiler since the visualizations always show the 
current dataframe in memory. 

5.6 Automatic visualizations speed up insight discovery 
Participants found the tools to be useful both as a first step in analysis, 
but also to help them understand their data after updates and transforms. 
We logged interactions during the study and present metrics of interest 
in Figure 5. We measured the unique dataframes explored as the num-
ber of unique dataframes toggled open (AutoProfiler) or called with 
plot (StaticProfiler). This metric captures how often a user returns to a 
dataframe after it updates or explores a new dataframe. For example, if 
a user explores df, updates it, then explores df again we would count this 
as two unique interactions. We observed that participants with AutoPro-
filer interacted with slightly more dataframes (9.9 vs 5.5), however, this 
difference was not statistically significant (P=0.21). Over the course 
of their analysis, participants were on average inspecting data profiles 
in AutoProfiler for almost 10 different slices or updates to dataframes. 
One of our participants with AutoProfiler actually interacted with 30 
unique dataframes during their analysis. 

We also measured the number of unique columns (including updates) 
that participants interacted with and find that they explore largely the 
same number of columns in each condition, investigating 25.5 unique 
columns on average with AutoProfiler and 24.1 with StaticProfiler. 
Since the original dataset had 13 columns, this indicates that partici-
pants were not only interacting with the original data but were returning 
to the profiles as they updated or filtered their data. This continuous 
interaction is the main goal of continuous data profiling. 

Overwhelmingly, participants found their insights with the assis-
tance of either tool rather than by manually writing code to get the 
same information. This means that when a participant said the insight 
aloud or wrote it down in their notebook, this information was discov-
ered through the tool. Across both conditions, an average of 91% of 
insights found came from the tool, with a non-significant difference in 
rates between the two conditions (P=1.0). This means that on average 
only 9% of insights were found by users writing manual pandas code 
during the study. This supports that the information contained in the 
profiles is useful and replicates what participants would have wanted to 
see anyway without requiring extra code to be written (Q2). As P14 
(StaticProfiler) said “it does a lot of the things that I already do, but 
just in one succinct and easy-to-understand way”. By presenting this 
information automatically, the tools saved participants time and pre-
vented them from having to exit their analysis flow to look up external 
documentation. As P10 (AutoProfiler) described: 

“I might have known to look for it, but it would have taken 
me a lot longer to remember how to do it in Pandas.” 

When data profiling information is more easily accessible it speeds 
up the entire analysis loop, making it easier to discover more insights 
in a shorter amount of time while still being thorough. As P9 (AutoPro-
filer) described: 

“I would probably try to do similar things that AutoProfiler 



suggests [on my own], but it would take a much longer time. 
Like the amount I did in 30 minutes, if I had to do it without 
AutoProfiler, would have taken hours. And then since it 
takes longer, my motivation would go down and my focus 
would go down. So I feel like I would have found far fewer 
errors than I could with AutoProfiler.” 

We found that not all insights were discovered with the same fre-
quency, with discovery rates between 6% and 81%. In Table 1 we see 
that some errors like #6 were found by 81% of participants; others 
like #8 or #10 were found by 6% and 38%, respectively. Error #8 was 
particularly difficult since the sqft column had to be parsed from a 
string to an integer (error #7) to get information about the outliers in 
the profiles. Many participants did not successfully fix this issue during 
the study time, explaining the low discovery rate. However, duplicate 
primary keys (error #10) was readily discoverable in the interface by 
looking at the number of unique values in the post_id column yet few 
participants found it. We discuss this usage trend in more depth in § 7  
about how tools can facilitate users finding information they would 
have already wanted to investigate, however if they do not know to 
check for an issue then this information is easily skipped over. 

5.7 Exports facilitate follow-up analysis and learning 
We also measured the number of times that participants exported to 
code during their analysis. Every participant used code exports at least 
once, with the total number of exports ranging from 1 to 16, with a mean 
of 7.1 exports. In Figure 5, we detail the average number of exports 
between the two tools. We see similar trends across both conditions, 
where participants export more selection exports than template exports. 
Selection exports refer to exporting a filter from a chart or summary 
statistic like exporting the selection for df[df.city == "San Jose"]. Al-
though these exports are small, they can help make follow-up analysis 
easier if a user wants to filter since “that’s probably the most annoying 
lines to constantly type is [to] just filter” (P5, using AutoProfiler). 

Template exports refer to code for authoring a chart or getting out-
liers. Participants also found this helpful because it helped facilitate 
tweaking code for follow-up analysis. When describing their reason for 
using chart exports, P14 (StaticProfiler) mentioned “It’s really nice to 
just quickly be able to like to copy that and use it, and then I could just 
make some edits to it.” This answers Q3 that exports facilitate faster 
feedback loops. 

Another unexpected benefit of code exports is the ability to actually 
learn Pandas better and understand what is going on under the hood 
of the system when it reports a statistic. As P12 (AutoProfiler) said 
succinctly: “I’m learning as I’m exploring and it’s saving me time.” 
Expanding more, P2 (StaticProfiler) mentioned: 

“For the educational perspective, that’s something I didn’t 
expect...specifically, I [exported] the standard deviation and 
I could see points inside or outside of 3 [std]. When I saw 
that code I learned that’s the way to do that.” 

The ability to teach users how to do common analysis steps is an 
exciting aspect of systems that support easily linking code and direct 
manipulation interactions. 

5.8 Limitations 
Our user study is subject to several limitations. First, subjects were 
explicitly told to explore and clean their dataset and were given 30 
minutes to engage with a brand-new dataset. This is a relatively short 
time span to learn and use a new tool on new data. We also suspect 
that the explicit instructions to find errors and write down findings in a 
report might have encouraged better continuous data profiling practices 
than what actually happens in real-world settings. However, these 
explicit instructions helped us determine which features specifically aid 
in continuous data profiling and what kind of errors users commonly 
find or miss. Another limitation is that participants analyzed a relatively 
small dataset. The errors and insights in our dataset were representatives 
of those found in larger datasets and we believe our findings translate 
well to other tabular dataset tasks. Finally, we compared two versions 
of our tool with different levels of automation to understand how they 

supported continuous data profiling rather than comparing to a baseline 
with no tool and view this as an area for future work. 

Fig. 6: AutoProfiler integrated into a domain scientist’s analysis workflow 

during our case study. AutoProfiler is shown on the bottom screen in the 

Jupyter notebook. 

6 EVALUATION: LONGITUDINAL CASE STUDY 

To address some of the limitations of our user study, we also evaluated 
how AutoProfiler helps data scientists in a real world environment 
by working with domain scientists at a US National Lab to integrate 
AutoProfiler into their workflows. These scientists work with large-
scale image data collected from beamline X-ray scattering experiments 
to understand the properties of physical materials [23]. Two different 
scientists installed AutoProfiler into their Jupyter Lab environments 
and used it over a three month period during their analyses as much as 
they liked. We were unable to collect log data during this deployment 
for privacy reasons. We periodically spoke with the scientists during 
the deployment to make sure the tool was working. At the end of the 
3-month period, we conducted in-person observations and interviews 
with the participants where they showed us the notebooks and datasets 
where they were using AutoProfiler and we asked about how they used 
the system, and which features they felt supported their workflows. 

As a Jupyter Lab extension, AutoProfiler fits into the existing work-
flows of these scientists since they typically did data analysis with 
Python and had existing libraries for visualizing and manipulating their 
data. AutoProfiler helped improve two different workflows they have 
for data analysis. The first is for monitoring data outputs and quality 
while an experiment is running. Their experiments last for multiple 
hours or even days while they collect image readings from a sensor and 
then process these images into tabular datasets with Python image pro-
cessing pipelines. As the scientists describe, during these experiments 
“real-time feedback is important as it shows us whether the experiment 
is working”. The participants mentioned how AutoProfiler improved 
this type of monitoring since it works with any Python-based analysis 
and “allows [them] to easily notice any anomaly and observe a trend or 
correlation during experiments.” 

The second way the participants used AutoProfiler was to analyze 
their results after an experiment completed. In this scenario, the scien-
tists “iteratively sub-selected a relevant set of data, using AutoProfiler 
as a guide, and then analyzed this subset of data using existing analy-
sis/plotting tools. Thus, AutoProfiler has shown its value in improving 



data triage, data organization, and serendipitous discovery of trends in 
datasets”. In the remainder of this section, we discuss two high-level 
patterns of use that emerged from interviews with the participants in 
our long-term deployment. 

6.1 Finding and following up on trends 
When using AutoProfiler to analyze their experimental results, our par-
ticipants expressed how the tool facilitated finding interesting aspects 
in their data and then diving deeper into those subsets. In this way, 
AutoProfiler facilitated a faster find-and-verify loop during analysis. 
The automatic plotting in AutoProfiler presented interesting plots in 
their dataset that helped them find subsets to export and explore further 
such as by running other analysis code to plot the images corresponding 
to each data point. They were especially excited about the possibility 
of incorporating bivariate charts into AutoProfiler so they would have 
to use even less of their own analysis code. 

6.2 AutoProfiler facilitates serendipitous discovery 
The scientists used the live version of AutoProfiler that updates when-
ever their data changes. They mentioned that the combination of all 
three features (automatic visualization, live updates, and code author-
ing) supported one another to lower the friction of their data analysis 
and were not enthusiastic about using versions of the tool without all of 
these features (such as in StaticProfiler). Furthermore, the participants 
mentioned that using AutoProfiler helped them discover trends or errors 
they might not have noticed otherwise: 

“One of the things that I very often notice is if the histogram 
is completely flat. That means that either all the numbers 
are exactly the same, or that it’s some sort of sequential 
number. Sometimes that’s what I’m expecting, so great. 
But sometimes, if it’s not what I’m expecting, then that 
immediately stands out as being weird and it draws my 
attention to it. I would never have noticed if it were not 
plotted; I would never have thought to plot it.” 

Our participants described how these unexpected, serendipitous, dis-
coveries were primarily facilitated by the auto-updating and automatic 
visualizations of AutoProfiler and made the system a valuable part of 
their workflow. 

7 DISCUSSION AND FUTURE WORK 

Data science is messy. There are a combinatorially large number of 
ways to slice a dataset, trying to find meaningful insights. The goal 
of continuous data profiling is to augment a human’s sense-making 
ability by automating the analysis feedback loop to be as fast as possible. 
Previous work has established that automated systems can best facilitate 
data understanding by automating the need for manual specification 
[15]. We found that two different versions of automatic profiling help 
speed up this feedback loop in our user study. Furthermore, we found 
evidence that the combination of automatic visualization, live updates, 
and code handoff leads to a smoother, more thorough analysis loop in 
our long-term deployment where our participants credited AutoProfiler 
with helping them find “serendipitous discoveries” in their dataset. 

In real-world tasks, encouraging critical engagement is challenging 
because analysts must trade off finding insights and errors quickly with 
a thorough and exhaustive analysis of their data. AutoProfiler’s design 
removes friction by saving time and clicks to better facilitate continuous 
data profiling. Since AutoProfiler works with any pandas dataframe, 
users do not have to write or copy and paste profiling code that might 
be tightly coupled to a specific dataset. This makes notebooks cleaner 
and easier to maintain. 

Future tools can leverage the benefits of both code and automated 
visualization for data analysis through linked and deeply integrated 
data profiles. Automatically presenting a starting set of profiling in-
formation and supporting follow-up analysis by enabling code exports 
helps reduce the feedback time during analysis. This approach differs 
from other profiling systems that aim to include as much information 
as possible in the interface without handing off to code [25, 30]. 

7.1 Guiding users towards unknown insights 
Beyond making data analysis faster, automated systems like AutoPro-
filer can help users discover insights they might have otherwise missed. 
These serendipitous discoveries present an interesting opportunity for 
tools to help users look at their data in new ways. However, this process 
cannot be fully automated. Automatically presenting data profiles to 
users gives them the opportunity to find insights. Users must still take 
the time to look at and interpret if an insight or error is noteworthy. 
Automated systems can augment human expertise, but do not replace 
it. For example, in our user study, many participants missed important 
data quality issues like duplicate values, even though this information 
was readily available in either tool if one knew to check. The most 
common types of unexpected errors discovered through AutoProfiler 
were strange distributions such as a totally flat distribution or weird 
frequent values. The distribution information is very visually prominent 
in AutoProfiler, perhaps making it easier to discover in the interface. 

Automated assistance in notebooks opens up the design space for 
further improvements toward guided analysis. One exciting area for 
future work is the potential to integrate alerts into automatic data pro-
files to draw user attention to important errors. For example, an alert 
could be displayed if a column has a number of null values or outliers 
greater than some threshold. Alerts must be customizable and designed 
to minimize alert fatigue, or else a user may totally ignore them [43]. 
With existing inline, manual profilers [30] these alerts would be re-
computed and displayed every time a user updates and re-profiles their 
data, quickly causing alert fatigue. Tools like AutoProfiler present an 
opportunity for persistent alerts between profiles that can better support 
continuous data science. 

7.2 Authoring more analysis code for users 
Our export to code feature was very popular among participants, with 
many requests for even more ways to export to code. Part of the benefit 
of AutoProfiler’s approach to exports is they are predictable: the system 
exports the same template code every time, with the dataframe and 
column names filled in. This is in contrast to generative approaches 
to code authoring such as Github Copilot [13] where a model might 
produce different code for the same task depending on the prompt. 
Users must then take time to understand this new code each time it is 
exported. The downside to template approaches like ours is that it is 
less flexible for arbitrary analysis. 

In our user study, we frequently observed participants needing to 
look up the documentation for how to write a certain command with the 
Pandas library, even if they were experienced users. As tools continue 
to evolve to automatically write analysis code through text prompting, 
we think this will make data iteration even faster. The linked, interactive 
outputs from systems like AutoProfiler becomes even more valuable to 
help users understand their data as the time it takes to write analysis 
code decreases, perhaps especially when users are not manually writing 
all of that code and need to understand its effect on their data. 

8 CONCLUSION 

In conclusion, we present AutoProfiler, a Jupyter notebook assistant 
that uses automatic, live, and linked data profiles to support continuous 
data profiling during data analysis. In a controlled user study, we find 
users leverage two versions of our tool, dead or alive, to find the vast 
majority of insights during a data cleaning task. Furthermore, we find 
that AutoProfiler easily fits into data scientists’ real-world workflows 
and helps them discover unexpected insights in their data during a 
longitudinal case study. We discuss how tools like AutoProfiler open 
up the design space for automated assistants to support continuous data 
profiling during analysis. 
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