
Diff in the Loop: Supporting Data Comparison in Exploratory Data Analysis

APRIL YI WANG, The University of Michigan, USA

WILL EPPERSON, Carnegie Mellon University, USA

ROBERT DELINE,Microsoft Research, USA

STEVEN M. DRUCKER,Microsoft Research, USA

Data science is characterized by evolution: since data science is exploratory, results evolve from moment to moment; since it can be
collaborative, results evolve as the work changes hands. While existing tools help data scientists track changes in code, they provide
less support for understanding the iterative changes that the code produces in the data. We explore the idea of visualizing differences
in datasets as a core feature of exploratory data analysis, a concept we call Diff in the Loop (DITL). We evaluated DITL in a user study
with 16 professional data scientists and found it helped them understand the implications of their actions when manipulating data. We
summarize these findings and discuss how the approach can be generalized to different data science workflows.

CCS Concepts: • Human-centered computing → Visualization systems and tools; Interactive systems and tools.

Additional Key Words and Phrases: data science programming, exploratory data analysis, data comparison

ACM Reference Format:
April Yi Wang, Will Epperson, Robert DeLine, and Steven M. Drucker. 2022. Diff in the Loop: Supporting Data Comparison in
Exploratory Data Analysis. In CHI Conference on Human Factors in Computing Systems (CHI ’22), April 29-May 5, 2022, New Orleans, LA,

USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3491102.3502123

1 INTRODUCTION

Data scientists try different transformations, aggregations, and filters until their data is in a state appropriate for the
given task [26]. When producing models from their data, data scientists similarly iterate on different model features,
architectures, and hyperparameters [1]. Existing tools for tracking changes typically only tackle half of the problem:
differences in code. Development environments, for example, allow users to compare differences in notebook code
cells between committed revisions [50], and Verdant reduces the burden of foraging code editing histories in Jupyter
notebooks [25]. Yet comparing versions of data throughout an analysis is just as important [17]. Code differences do not
always reveal data differences. For example, removing missing values from one column of a dataset may also affect the
distributions of the dataset’s other columns. To track the effect that different lines of code have on the data currently
requires data scientists to take the initiative to write additional code to browse or plot the data.

Recent work has begun to explore ways for analysts to understand and explain data iterations. Datamations uses
animation to explain data transformation pipelines [36], and Chameleon allows analysts to compare data iterations
simultaneously with model performance [21]. However, these approaches explain data differences after analysis has
been done. In this paper, we explore adding visualizations of data differences as a core feature of tools for exploratory
data analysis, a concept we call Diff in the Loop (DITL). Our DITL prototype stores a snapshot of the code and runtime

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

1

https://doi.org/10.1145/3491102.3502123


CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Wang et al.

A

B

C D E

Fig. 1. As users iterate on their data during analysis, they can use DITL to compare data snapshots. Every time users successfully
execute code we save a snapshot (A). Users can compare the code using traditional code diffing tools. Users can also use DITL to
compare data iterations with interactive visualizations, descriptive statistics, and data preview (B). User can choose three ways to
visualize the differences in each column: delta view (C), opacity view (D), and parallel view (E).

variables as users make changes in the code editor. Using a table-based diff view (Fig. 1), users can either compare
different datasets or compare the same dataset at different snapshots. When comparing datasets A and B, the user can
choose three ways to visualize the differences in each column: plotting histograms of A and B side by side; overlaying
histograms of A and B, with cross-fading between them; or as a histogram of the user’s chosen dataset (either A or B),
plus a plot of the difference in the histogram bucket counts (either A subtracts B or B subtracts A). For each column, the
DITL prototype also shows differences in descriptive statistics that are appropriate for that column’s data (categorical or
quantitative). The DITL view is designed to support both the explicit comparison of datasets and implicitly monitoring
the evolution of a dataset as the user transforms it.

For example, Fig. 1 illustrates the effect of filtering a car dataset named df to those rows whose Cylinders column
is greater than 4. The summary under the Cylinders column directly reflects this change: the top "view" plot shows a
histogram of the current values (all above 4); the bottom "delta" plot shows that this step has the effect of removing
rows with values 3 and 4, but keeping rows with values 5, 6, and 8. This column’s summary confirms that the filter
had the intended effect. Further, the DITL view also shows the effect this filtering step had on the other columns. For
example, the distribution of Miles_per_Gallon lost the higher end of its distribution, with its median lowering from

2



Di� in the Loop: Supporting Data Comparison in Exploratory Data Analysis CHI '22, April 29-May 5, 2022, New Orleans, LA, USA

23 to 17. Meanwhile, the columnsDisplacement andHorsepowerlost the lower ends of their distributions. By having

these data di�erences shown during exploratory data analysis, the user can maintain awareness of the e�ects that code

has on the dataset as a whole, not just on columns mentioned in the code. Today, such awareness would require both

the initiative and extra e�ort to write the code oneself to produce the plots and summaries.

We evaluated DITL in a user study with 16 professional data scientists, where participants were asked to �nish

typical data science programming tasks. They found DITL to be useful for tracking and understanding data changes.

Furthermore, DITL improved their awareness of the side e�ects of some coding activities, guided them towards insights

into the data, and reduced their workload for given data science tasks. We discuss the potential to integrate DITL in

various data science programming tools and to generalize this approach for tracking changes in user-generated charts.

To summarize, our contribution is twofold:

� A demonstration of the bene�t of elevating data di�erences through visualizations to a core feature in a data

science programming environment;

� Insights into users' needs and uses for leveraging both code and data di�erences during exploratory data analytic

work�ows through a user study with 16 data scientists.

2 BACKGROUND AND RELATED WORK

2.1 Supporting Exploratory Programming

In his 1977 book, Tukey describes exploratory analysis as �detective work� [49, p. 1] where analysts must iteratively

create, re�ne, and explore hypotheses about their data. This pithy description is equally apt for modern data science,

where the exploration of the di�erent facets of data is one of the de�ning characteristics [1, 2, 18, 20]. Today, data

scientists still spend up to 80% of their time doing data wrangling tasks like cleaning, �ltering, and formatting data

tables before they can begin further analysis [7].

In order to support the �exible programming needs in data science, tools like Jupyter Notebook [35] allow users to

interleave code with documentation to aid explanations. Observable [32] and Glinda [10] leverage live programming

to provide immediate feedback and keep notebook results consistent. Moreover, online data science programming

tools like Google Colab [16] and DeepNote [8] allow multiple users to edit the notebook together and execute the

code in a shared environment. Other tools enhance the notebook programming environment by providing rich history

interaction [24] or visualization provenance [55]. However, the ability to easily compare versions of data in notebooks

or other exploratory programming environments remains a challenge.

Visual Analytics systems help data scientists explore their data visually with custom visualizations [11, 43] or

recommendations [44, 53, 54]. While these systems allow programmers to visualize a single iteration of their data at

a certain point in time, DITL focuses on comparing versions of data across iterations. Most similar to our work are

Chameleon [21] and Boxer [15]. Chameleon focuses on the context of data iterations as it relates to model development

and thus prioritizes shifts in feature distributions or train and test splits, while Boxer focuses on comparing changes

for classi�cation results. However, DITL demonstrates techniques that can be used to show data iterations for many

di�erent types of data transformations and focuses on demonstrating the bene�t of including data iteration in a broader

set of data analysis tasks.

3



CHI '22, April 29-May 5, 2022, New Orleans, LA, USA Wang et al.

2.2 Making Sense of the Changes

Data scientists often leverage version control systems to track code and output changes. However, popular tools like

GitHub [12] compare notebooks as JSON �les, making changes hard to read and understand. ReviewNB [37] and VS Code

[50] improve the readability of the notebook di�s by rendering code di�s and output di�s side-by-side in an intelligible

format. Additionally, some online data science programming tools allow code change tracking for incremental user

edits [8, 16]. Our work extended the concept of di�ng and versioning control from code assets to data tables.

Various tools demonstrate the bene�ts of interaction with analysis histories during exploratory programming. Kery

et al. [25] designed an algorithmic and visualization approach for �nding past exploration paths in the long editing

histories of computational notebooks; Head et al. [19] used program slicing to gather relevant editing histories into a

minimal notebook; Wang et al. [52] proposed connecting team chat messages with code edits to aid in the explanation

of editing logs. Additionally, animation has been used to communicate analysis pipelines and history [36], or to make

the relationships between two visualizations more clear [27, 47]. DITL builds on these previous approaches by elevating

data table di�erences as a primary concern during analysis.

Comparing and visualizing di�erences has previously been explored in context of dashboards or static tabular

datasets [13, 14, 29� 31, 42]. Niederer et al. proposed interactive comparison tools to visualize changes in tabular

datasets [31]. Srinivasan et al. found that explicitly visualizing the di�erences between two bar charts was most

e�ective for comparison [42]. This explicit di�erence visualization inspired our delta view presented in Section

4.4.3. Furthermore, Gleicher presents three design strategies to support comparison between two datasets through

visualizations: juxtaposition of the datasets, superposition of the datasets, and explicitly encoding the relations [13, 14].

We employ all three of these designs in our visualizations of data table di�erences.

Finally, work from the databases community has proposed the Data Di� problem as �nding the best transformation

from one dataset to another, and present a tool to �nd such transformations [45]. Our work di�ers from this approach

in that we assume that an analyst has full access to the code that produced two datasets. Therefore we do not focus on

�nding a transformation function but rather on presenting the changes in data points a�ected by these transformations.

3 DESIGN MOTIVATIONS

To motivate the problem and guide the design, we present three typical usage scenarios that demonstrate how showing

both code and data di�erences would be useful during exploratory data analysis.

3.1 Understanding the Impact of Code Changes in Debugging

In exploratory data analysis, data scientists write code to replace values in data tables, transform and combine data

tables, or query subsets of data tables. Debugging data science code involves both ensuring that code changes compile,

but that they also produce expected results [38]. However, existing data science code debuggers provide limited support

for probing into the impact of code changes [4, 28]. Data science programmers often need to formulate temporary code

queries to inspect data tables, which are likely to become stale or commented code that reduces the readability of the

analysis scripts or notebooks [39]. Manual inspection is often performed on demand so analysts may miss unexpected

impacts if they do not thoroughly explore the e�ects of code changes. Therefore, it is critical to inspect di�erences

in both code and data throughout analysis. We believe that showing both code and data di�erences in data science

programming environments can directly aid debugging.

4



Di� in the Loop: Supporting Data Comparison in Exploratory Data Analysis CHI '22, April 29-May 5, 2022, New Orleans, LA, USA

Fig. 2. We integrate DITL into a simplified data science programming environment that allows data scientists to edit code, inspect
data tables, and compare di�erent data tables. This interface shows that the user is browsing a snapshot tagged 1k9i8j where the edit
took place at 12:18:17. (A) Users are able to navigate among saved snapshots, compare code di�erences and output di�erences, or
switch to the current code editor; (B) Users can edit code in the current code editor which automatically saves a new snapshot upon
successful execution, or view code changes in a snapshot; (C) Users can switch between the output panel, the data panel panel, and
DITL.

3.2 Gaining Insights in Data Through Comparisons

Data scientists must make decisions throughout exploratory data analysis. Which features should be taken into

consideration? How should null values be �lled in? Does it matter if this part of the data is dropped? These decisions

require makingcomparisonsbetween whether or not a certain step improves the analysis. As opposed to comparing

other types of variables, comparing data tables is exploratory and open-ended. Data scientists often need to tailor the

comparison strategy according to the task. When tuning hyperparameters, data scientists must formulate a scoring

function to compare the quality of the generated data tables. In model development data scientists must consider

shifts in feature distribution, train test splits, and model performance when comparing data iterations [21]. In addition,

understanding di�erences in model performance often requires data scientists to consider beyond simply aggregating

performance statistics. Comparing between data tables of the results can give them new insights on regions of impact

on model changes. These examples demonstrate how comparison is an inherent task within exploratory data analysis.

3.3 Improving Awareness in Collaboration

Lastly, comparing data tables improves data scientists awareness of each others' work in collaborative settings. Data

scientists rely on collaboration to improve the quality of their work [56]. Tracking and managing versions of scripts,

artifacts, and documentation can help data scientists improve the e�ciency of collaboration, reduce duplicated work,

and avoid interference with each other [51]. Code versioning and editing sharing mechanisms (e.g., Git) in traditional

software engineering can help data scientists managing code iterations when handing o� work. However, it is not
5



CHI '22, April 29-May 5, 2022, New Orleans, LA, USA Wang et al.

Fig. 3. The data panel allows users to inspect a single data table. (A) Users can select saved data frames from the current code
snapshot; (B) The data panel shows the distribution of each column; (C) The data panel shows the summary statistics for each
column; (D) The data panel shows a sample of rows from the selected data frame.

straightforward for data scientists to interpret the impact of code changes unless they execute various versions of code

and inspect the data tables thoroughly. We believe that showing and tracking both code and data changes can augment

the existing data science collaboration tools by improving awareness of changes.

4 SYSTEM DESIGN

To address these use cases, we present DITL, a process of inspecting and comparing versions of data tables using

interactive visualizations. We integrate the design into a simpli�ed notebook experience so that we can examine how

data scientists use it for comparing data tables. We choose to implement the simpli�ed data science programming

environment to highlight the utility of incorporating data table di�erences during exploratory data analysis without

the distraction of other programming features included in existing tools.

4.1 Overview of DITL Study Apparatus

Figure 2 shows an overview of DITL study apparatus. As opposed to Jupyter notebooks, it has a single code editor

for editing and running code. Users can make changes in the code editor (Figure 2B) or view the historical contents

in previous edits. A snapshot (Figure 2A) is saved upon successful execution, which tracks the code content, output,

runtime variable values, and a timestamp. Each snapshot is marked with a unique hashtag to aid in history navigation.

Below the code editor, users can switch between the output panel, the data panel, and DITL. The output panel shows

the results of users' consoles. The data panel (Figure 3) allows users to inspect the value of a single data table, using a

design inspired by existing data table inspectors [34, 46]. As shown in Figure 3A, users can select saved data tables

across di�erent code snapshots. For each column, the data panel displays a visualization of the distribution (Figure 3B),

summary statistics (Figure 3C), and sample rows (Figure 3D). Next, we elaborate on DITL and explain how the di�

views are generated.

4.2 Tracking Runtime Variables

The programming prototype we built is able to collect runtime variable values upon every successful execution. The

web-based interface executes Python code and stores the names and values of variables that are dataframes. This

approach allows us to create snapshots during each code iteration which are later used to create the dataframe di�
6


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Supporting Exploratory Programming
	2.2 Making Sense of the Changes

	3 Design Motivations
	3.1 Understanding the Impact of Code Changes in Debugging
	3.2 Gaining Insights in Data Through Comparisons
	3.3 Improving Awareness in Collaboration

	4 System Design
	4.1 Overview of DITL Study Apparatus
	4.2 Tracking Runtime Variables
	4.3 Comparing Changes in Data Frames
	4.4 Rendering Data Frame Diffs

	5 Usability Study
	5.1 Method
	5.2 Results

	6 Discussion and Future Work
	6.1 Towards a Design Space for Visualizing Data Comparisons
	6.2 Generalizing from Comparing Data Tables to Comparing Arbitrary Charts
	6.3 Integrating DITL in Data Science Programming Environments
	6.4 Limitations

	7 Conclusion
	Acknowledgments
	References

