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Abstract

Data has been a key driver behind recent advances in science, engineering, and artifi-
cial intelligence. As datasets have grow larger and more complex, the primary bottleneck
has shifted from access to data towards the human effort required to interpret it. Human
expertise is essential to understand datasets, however generating this understanding during
analysis remains a time-consuming and manual process. Many AI modeling failures are, at
their core, data problems—issues that might have been addressed earlier with better tools
for understanding the data. Data visualization facilitates understanding through visual rep-
resentations, however existing approaches to visual data exploration introduce friction that
slows users down, requiring manually defining charts and interactions through code or con-
text switching to a new analysis tool. How can we build flexible and lightweight systems to
help people more quickly understand their data?

This thesis develops systems for Interactive Data Profiling that accelerate data explo-
ration through lightweight and interactive interfaces that fit into current analysis workflows.
We first motivate this problem through a large scale interview study and survey of data sci-
entists that reveals the potential for tools to help users manage the repetitive code used for
data profiling. We then discuss the design, implementation, and evaluation of three systems
that develop the approach of interactive data profiling. First, we describe AUTOPROFILER,
a system that augments programming environments with automatic data profiles that show
summaries of the data in memory and update as a user programs. We then extend this
approach with SOLAS which tracks the history of a user’s analysis code to create data
profiles adapted to the current task and user interest. User evaluations demonstrate how
the lightweight visualizations and fast feedback loops enabled by these systems help users
quickly identify important patterns and data quality issues. Finally, we present TEXTURE,
a general-purpose text exploration tool that enables users to iterate on attributes for describ-
ing their text and then explore results in the interactive UI. Expert user studies show how
TEXTURE enables more efficient exploration and helps users uncover new insights from
their text datasets.

Together, these tools establish how to situate interactive data profiling within data sci-
ence workflows to enable a fast feedback loop between manipulating data and inspecting
the results. As data remains an increasingly important component of modern work, in-
teractive data profiling systems can play a critical role in enabling faster, more reliable
understanding of the data behind models and decisions.
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Chapter 1

Introduction

In today’s data-rich world, more and more applications are powered by insights derived
from data or AI models trained on vast amounts of data. Data drives treatment decisions
in healthcare, informs news stories in data journalism, helps businesses understand current
and future trends, and has fueled recent advancements in Artificial Intelligence (AI). How-
ever, this proliferation of data means that it is increasingly difficult to actually make sense
of it. As Hebert Simon pithily observed: “A wealth of information creates a poverty of
attention” [149].

This observation still rings true today when analyzing and modeling data. Data is over-
abundant, yet high-quality data can be scarce. This combination makes it hard to appro-
priately direct attention when working with large datasets. For example, prior research has
shown that many popular AI model benchmark and training datasets contain label errors,
duplicates, and ambiguous data points that make evaluation difficult [35, 72, 155]. Other
estimates describe identifying and cleaning dirty data as 80% of the cost of data warehous-
ing projects [26].

The sheer quantity of data available for analysis and potentially poor quality mean
that it is critical that users have tools that can help them properly explore and understand
their data. Despite advancements in automated techniques for detecting quality issues and
mining insights from data, human judgment remains essential for interpreting data within
specific analytical contexts. Users must apply their domain and contextual knowledge to
make sense of distributions and handle issues like outliers, poorly labeled instances, or
missing data [76].

Dealing with quality issues and exploring results are all part of the process of Ex-
ploratory Data Analysis (EDA). EDA involves examining sample values, statistics, and
summary visualizations to profile a dataset and discover data insights that can guide next
steps [156, 165]. Importantly, EDA not only happens once at the beginning of an analysis
but occurs iteratively as users manipulate, clean, and add new results to their data [5, 75,
165]. After each iteration, users must re-profile their data to understand the latest version.

While modern data programming and visualization tools have become increasingly per-
formant and expressive, users must still manually create visualizations and summaries to
profile their data. Open-source libraries make it possible to create custom data transfor-
mations and visualizations for exploring datasets [119, 142]. However, leveraging these
tools effectively requires significant time and expertise. Surveys of data scientists indicate
that nearly half of their time is spent on data cleaning and visualization alone [8]. Since
understanding datasets is difficult and time-consuming, this critical step is often bypassed
in favor of downstream tasks such as model training or statistical testing. This neglect can
lead to harmful data cascades, where initial issues compound, ultimately compromising
model performance in high-stakes domains like healthcare and loan allocation [141].

1



1.1 Interactive Data Profiling

In this thesis, we investigate how to design tools that help users quickly explore, profile,
and understand their data. Data science workflows are inherently iterative: users repeat-
edly acquire new data, clean it, train models, examine results, and revisit earlier steps as
new insights emerge [5, 75, 165]. Yet existing data exploration tools are not optimized
for these iterative workflows. Many systems operate as standalone applications, requir-
ing users to repeatedly export data from their programming environments, analyze results
externally, and then return to programming. Even within programming environments, man-
ually creating visualizations after each step introduces friction and delays feedback. This
thesis explores how to design integrated data exploration tools that streamline iteration,
enabling users to more easily profile each version of their dataset throughout analysis (see
Figure 1.1). This integrated approach reduces the feedback loop between data manipulation
and understanding, ultimately facilitating more effective data analysis.

Interactive Data Profiling

Acquire Wrangle Model Report

Explore

Figure 1.1: Traditional data workflows emphasize the iterative nature of working with data; how-
ever, tools are still designed for exploration as a stand-alone step. Interactive data profiling con-
siders how to to design data exploration tools that are easily accessible from each step in analysis to
speed up the feedback loop of data understanding.

We discuss the design, implementation, and evaluation of three different systems that
develop the approach of interactive data profiling. These systems focus on increasingly
dynamic forms of data profiles—first offering the same profile for every dataset in memory,
then presenting data profiles that adapt based on historical data interactions, and finally
offering an approach for flexibly profiling data attributes for unstructured data as they are
defined by a user.

We first describe how tabular data profiling tools can be designed to offer faster feed-
back as users program with their data. Interactive programming environments like compu-
tational notebooks have become the tool of choice for data science because they enable the
type of iterative and incremental programming that is characteristic of data science [140].
Accordingly, visualization tools have been developed to help users visualize their data in
computational notebooks [96, 120, 138]. However, we find that these tools fail to offer
the fast feedback necessary to truly enable rapid EDA while programming with data. We
therefore present the design of two systems designed to speed up the feedback cycle while
notebook programming with tabular datasets: AUTOPROFILER and SOLAS. AUTOPRO-
FILER integrates automatic data profiles into computational notebooks that automatically

2



update after each interaction with the data. Through these data profiles, users can quickly
inspect a summary of each dataset in memory then drill down into individual columns and
insights. SOLAS then explores how to make these data profiles more dynamic by consider-
ing the provenance of the dataset and tracking the history of a user’s interactions to adapt
data profiles to the current task and user’s interest. We discuss the designs of these sys-
tems, their implementation, and user studies that show how they make it easier for data
scientists to understand their tabular datasets while programming by automating many of
the repetitive steps of manual EDA.

The final part of this thesis extends these ideas beyond tabular data to support the explo-
ration of unstructured text corpora. Understanding collections of text documents is essential
in fields from computational social science to NLP, and requires first defining meaningful
representations—such as words, phrases, topics, or classes—and then building visualiza-
tions to profile these attributes. In current workflows, users must manually construct each
profiling visualization, making it difficult to link insights across views through interaction
and slowing the feedback cycle in analysis

To address these challenges, we introduce TEXTURE, which enables fast profiling and
interactive exploration of text datasets. TEXTURE provides a configurable data schema
for categorizing descriptive text attributes and an interactive interface for exploring them.
Building on the workflows developed in the previous systems, TEXTURE adds an additional
layer by allowing users to explore different structured representations of their text data
within the same interactive environment. We present the design and implementation of
TEXTURE and report results from a user study with expert users. Our evaluation shows
that TEXTURE is both expressive across domains and effective in helping users uncover
new insights in their text data.

1.2 Thesis Statement

This thesis hypothesizes that interactive systems for data profiling can accelerate users’
understanding of their data and help them effectively explore datasets and discover issues.
Interactive data profiling tools create a fast feedback loop between interacting with data
and visualizing results by automatically generating visual profiles within programming en-
vironments that update as users code, adapting profiles based on users’ analysis history, and
enabling users to define custom attributes from unstructured text and interactively explore
the resulting visual data profiles.

1.3 Thesis Overview

Chapter 2 discusses background and prior research on interactive data visualization, ex-
ploratory analysis, and data profiling tools.

Chapter 3 presents a motivational interview and survey study on how developers manage
and reuse the code they write for data analysis. The results of this study reveal different
strategies developers use to re-purpose previously developed code for new tasks, including
difficulties with reusing code for common repetitive tasks like exploratory data analysis.

3



Figure 1.2: An overview of the systems presented in this thesis.

We discuss how the findings from this study inform the design of tools to help people save
time during analysis by speeding up exploratory analysis.

Chapter 4 presents AUTOPROFILER, a system that augments computational notebooks
with a live data profiling sidebar that automatically profiles data in memory and updates
when the data changes. This design enables users to rapidly see an overview of their dataset
as they iterate during analysis, speeding up the feedback loop between making changes and
verifying the results. We present the results from a lab study and longitudinal case study
evaluating how scientists use AUTOPROFILER during their work, finding that AUTOPRO-
FILER helps users learn key information about their datasets without having to write any
extra code and enables users to notice unexpected patterns in their data.

Chapter 5 describes how SOLAS extends the ideas of tabular notebook profiling presented
in AUTOPROFILER by incorporating a user’s analysis history through the code they write.
Tracking analysis history enables task-specific data overviews and ranking overview vi-
sualizations according to a user interest model in each column. We discuss how SOLAS

models user interest by tracking the history of analysis code and the results from a user
evaluation that shows that users find the task-specific visualizations enabled by SOLAS to
be more helpful than a baseline.

Chapter 6 then discusses how to develop interactive data profiling tools for text data.
While AUTOPROFILER and SOLAS support exploration of structured tabular data, many
critical workflows involve unstructured data such as text. Text exploration poses distinct
challenges since the data cannot be easily profiled into a single overview visualization. To
address this, we frame text exploration as a structured data problem, where arbitrary de-
scriptive attributes derived from text—such as words, phrases, topics, or embeddings—can
guide interactive exploration. We present TEXTURE, an interactive system that enables
users to define these structured attributes through a configurable schema. TEXTURE then
automatically visualizes structured attributes in interactive charts linked back to the text,
allowing users to rapidly filter, explore, and form new hypotheses. Through an expert user
study with real-world datasets, we demonstrate how TEXTURE shortens the feedback loop
between hypothesis formulation and validation, enabling users to uncover critical quality
issues in their datasets and learn new things even in datasets they had previously analyzed.

Chapter 7 concludes this thesis with a discussion of impact and future research opportuni-
ties.
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1.4 Prior Publications and Authorship

While I am the principal author of this research, this thesis is the result of years of collab-
oration with my advisors Dominik Moritz and Adam Perer along with co-authors on each
individual paper. At the beginning of each chapter, I include references to prior publica-
tions.
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Chapter 2

Background & Related Work

This chapter discusses background material and related research. First, we discuss the users
who work with data and their tasks. We then motivate the importance of data understanding
for data analytics and AI workflows. We conclude with an overview of prior systems to help
users explore data while programming.

2.1 Who Programs with Data and What are They Doing?

Many different kinds of users program with data. Several previous researchers have de-
scribed these users, their goals, and needs. Early descriptions of data scientists describe
how the most universal skill among data scientists is the ability to write code to extract-
ing meaning and insight from data [29]. End user programming has long studied users
who do “programming to achieve the result of a program primarily for personal rather
than public use” [89]. This is distinct from professional developers like software engineers
since the code is a means to achieve an end, rather than the end in itself. Guo similarly
describes research programmers as users who are “writing programs to get insights from
data” [56]. Another definition comes from Kery who describes exploratory programming
as a “programming task in which a specific goal or a means to that goal must be discovered
by iteratively writing code for multiple ideas” [79]. This builds on earlier definitions that
describe the iterative software support needed for AI development [145].

These prior characterizations have several elements in common. First, for data sci-
entists, programming is a critical tool but is a means to an end rather than the primary
objective. This leads to the second observation that iteration is key when working with
data. Data scientists iterate on their data, on visualizations, on models, and on results to
explore different ways of making sense of and using their data. The importance of iteration
influences the choice of tools that data scientists use to work with their data (like com-
putation notebooks) and also the design of Interactive Data Profiling tools that must work
within highly iterative workflows.

Iteration is a central element of prior task frameworks that describe the workflows and
tasks data scientists go through when developing machine learning models or using visual-
izations to understand their data. Piroulli and Card describe the process of data science as a
sensemaking activity [127]. Data analysis starts from raw data which is then filtered to find
evidence. This evidence is organized into schemas and hypotheses and finally evaluated
for presentation. They describe the challenges in finding relevant information, along with
ensuring that evidence is wholistically considered.

Kandel et al. [75] describe a five step process for enterprise data analysis and visual-
ization consisting of data discovery, wrangling, profiling, modeling, and reporting. In their
definition, data profiling refers to understanding a dataset, potential quality issues, and as-
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sumptions they can make about their dataset such as each attribute’s distribution. Later
task models describe the Exploratory Data Analysis (EDA) process with very similar steps,
and emphasize the iterative nature of analysis [5, 165]. While working with data, analysts
continually iterate between these different steps as they learn about their data and explore
different paths. Data exploration and understanding is not an atomic step of this process
but something that occurs continually throughout analysis [5]. Similar breakdowns of the
process of developing Machine Learning or AI models emphasize the iterative nature of the
process as developers define a model goal, prepare their data, train the model, evaluate and
then iterate [6]. The Interactive Data Profiling tools presented in this thesis are designed
for iterative analysis. They focus on providing a fast feedback loop between writing code
to manipulate data and seeing visual representations of the results so that users can spend
less time transitioning between activities and more time making progress in analysis.

Prior research has also studied how developers debug their programs, a process in-
volving both program comprehension [137] and sensemaking to fix issues [52]. Similarly,
when working with data, practitioners must first understand what is in a dataset and then
investigate any resulting issues. Many of the difficulties in making sense of software also
apply to data, as developers often struggle to connect abstract observations to concrete
fixes. Techniques aiding program comprehension and debugging, such as explanatory de-
bugging [88], have informed approaches to help users interpret data-intensive systems like
machine learning models [91]. Data programming includes additional challenges beyond
traditional programming because it demands both software engineering and data compre-
hension skills [6, 66]. While program correctness can often be objectively measured (e.g.,
through tests), data quality may depend on context and can only be evaluated by the end
user performing the data work in their context [54].

2.2 Understanding Datasets Through Visualization

Ensuring data quality and understanding what is present or missing in a dataset are funda-
mental to analytics and modeling. Failing to fully understand the data introduces risks. Re-
cent research has highlighted how with the increasing emphasis on developing AI models,
people often undervalue data quality which compounds into negative downstream effects
like poorly performing models in deployment [141]. As the popular “garbage in, garbage
out” adage for machine learning warns: poor data yields poor outcomes.

However, dataset issues are often not discovered until after an analysis is completed or a
model deployed, affecting both industrial settings and widely used benchmark datasets. For
example, Swayamdipta et al. [155] found that many difficult instances in Natural Language
Processing (NLP) benchmarks stem from mislabeled data, and similar issues appear in
Computer Vision benchmarks, where the only remaining errors in some benchmark datasets
are largely because of label errors [159].

Data visualization can help people understand their data and spot potential issues by
engaging the human perceptual system [21]. As Shneiderman says: “the purpose of vi-
sualization is insight, not pictures” [70], reflecting the use of visualization to offer deeper
insight into the trends or observations that lie within a dataset. These insights can take
many forms, from “Aha!” moments when a user finds something surprising in their data,
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to more rote observations like understanding the distribution of an attribute or the presence
of outliers [12, 19, 20]. Data insight often involves connecting data facts with the domain
knowledge that an analyst already has [20, 100]. This domain knowledge and the context
in which data is used is critical for a user to make a decision on if an observation is actually
a meaningful insight or error.

Using visualizations to understand a dataset has been a longstanding best practice.
Tukey was an early advocate for plotting distributions and summary statistics through Ex-
ploratory Data Analysis (EDA) to get to know your data before confirmatory analysis (hy-
pothesis testing) begins [156, 157]. Traditional approaches for Exploratory Data Analysis
(EDA) and Visual Analytics emphasize the importance of exploring datasets throughout
analysis and using visualizations combined with data mining algorithms to understand
data [78, 156]. Current best practices taught in university statistics courses still empha-
size the importance of starting analysis with summaries of individual columns, such as
distributions and descriptive statistics, before moving on to plot combinations of columns
or investigating correlations [143]. However, little research has explored how to best de-
sign tools that integrate data exploration directly into the programming workflows where
the majority of data work happens.

2.3 Automatic Data Visualization and Profiling

Despite the importance of data understanding and visualization, it still proves challenging
and time consuming for users. Multiple surveys of production data scientists routinely
describe the difficulty and time spent on data understanding, profiling, and wrangling [8,
75, 85]. For example, a recent Anaconda foundation survey described that data scientists
self-reported spending almost 50% of their time on data cleaning and visualization [8].

Visualization recommendation systems aim to automate the visual presentation of data
to speed up the data understanding process. Visualization recommendation typically has
two goals: (1) helping analysts follow best practices by creating visualizations that are
both expressive and effective, and (2) removing the tedium of crafting visualizations to
make the exploration process faster and more robust [59]. Some systems automate visual
presentation and then rank charts according to metrics of interest such as high correlation
[32], charts that satisfy a particular pattern in the data [147], or emphasize “data variation
over design variation” to explore a wide range of attribute combinations [167, 168]. Other
tools explicitly consider data quality in visualization like the Profiler system which checks
data for common quality issues such as missing data or outliers, and presents charts to the
user in data profiles that highlight potential issues [76]. We adopt this term throughout this
thesis to refer to any data overview visualization as a data profile.

Many of the visual analytics systems for exploration follow Schneiderman’s Visual In-
formation Seeking Mantra: “Overview first, zoom and filter, then details-on-demand” [146].
This presents a common interaction paradigm where systems can first provide an overview,
then support follow up queries through interaction (zoom, filter, details). The Interactive
Data Profiling tools in this thesis incorporate these ideas for data programming workflows.
They show data overviews quickly and easily, then allow users to ask subsequent questions
through interaction (either through code or through the GUI).
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2.4 Meeting Users Where They Work: Supporting Data Program-
ming

While many visualization recommendations tools provide algorithms and interactions to
facilitate data exploration, they were not designed for a programming centric workflow,
making it hard for data analysts to incorporate them into their existing tool stack [5]. For
data work, this means integrating into the Python and Jupyter ecosystems.

Python has become the dominant programming language for data work, overtaking
JavaScript as the most popular language on Github (a code sharing website) in 2024 [150].
This surge in popularity can be attributed, in part, to widely used open-source Python li-
braries for data science, such as Pandas for data manipulation [119], PyTorch for AI model
training [24], and Jupyter for computational notebook programming [129]. Computational
notebooks provide users with an interactive and iterative programming environment that is
highly conducive to the iterative work of data analysis and visualization [123, 140]. Prior
research has explored how to make data programming easier in computational notebooks
from helping users track versions of their analysis [79] to cleaning up the messy code in
notebooks [58].

Researchers have begun to explore how to integrate visualization recommendations into
notebook-based programming. Lux [96] and other open-source tools [14, 55, 120, 138]
provide on-demand exploratory data analysis (EDA) information for individual Pandas
dataframes. Meanwhile, other tools examine how to balance interacting with data either
through code or a graphical user interface (GUI). Although programming languages are
flexible and expressive, GUIs are often more responsive and easier to use [5]. Some prior
notebook systems have attempted to bridge this gap by automatically writing interactions
made through charts [170] or widgets [82] back into the notebook environment.

The Interactive Data Profiling tools introduced in this thesis build on these earlier ef-
forts, offering automatic data visualization capabilities both within the notebook environ-
ment and Python programming workflows. AUTOPROFILER and SOLAS focus on deliver-
ing rapid feedback during notebook programming, enabling a tight feedback loop between
writing code and inspecting results. TEXTURE helps users understand unstructured text
datasets in Python workflows, where the notion of an “overview visualization” requires
iterating on different summary attributes to profile.

2.5 Interactively Exploring Data

Prior research has explored enabling dataset interactions to support follow-up analysis.
Data visualization frameworks like Vega-Lite allow users to make chart selections that
filter other visualizations [142]. Similarly, Mosaic expresses interactions as SQL predicates
to support large-scale dataset interactions [61]. Other work links data interactions back to
programming environments, such as B2 [170], which persists chart interactions as notebook
code, and Mage [82], which provides an API for interactions across notebook GUIs and
code. This thesis builds on these patterns to support interactions with data profiles beyond
the initial overview. Both AUTOPROFILER and SOLAS focus on user interactions through
code to manipulate data before profiling the results. AUTOPROFILER includes interactions
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similar to Mage, writing code to the notebook on the users behalf based on the data profile.
TEXTURE supports interactions in the interface for cross-filtering data profile charts.
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Chapter 3

Motivating Study on Coding Practices in Data
Science

This chapter is adapted from the following published paper:

[38] Will Epperson, April Yi Wang, Robert DeLine, and Steven M. Drucker. “Strategies for
reuse and sharing among data scientists in software teams”. ACM ICSE-SEIP. 2022.

3.1 Summary

This chapter describes an interview study and survey that explore how data scientists reuse
and share the code they write for analysis. Since data science relies on code closely coupled
with data, we investigated how data scientists work with this data-centric code, which tasks
are frequently reused in future analyses, and how tools might support repetitive program-
ming tasks involving data. Our findings identify five strategies that data scientists employ
to manage their data-centric code, including the practice of using template notebooks—
pre-existing scripts or notebooks that serve as customizable starting points for new tasks.
These notebooks are useful for repetitive workflows like exploratory analysis, where users
want to ask similar questions or generate similar visualizations, even when the underlying
data schema changes for a new dataset. This pattern highlights the need for lightweight
overview tools to address common analysis questions and help users quickly understand a
dataset’s contents. In this chapter, we detail the methods and findings from our interviews
(N=17) and survey (N=132) conducted with data scientists at Microsoft.

3.2 Introduction

As software engineering developed into a mature discipline, the ability to effectively share
and reuse code has become a critical factor for success [46, 53, 87, 90]. Particularly as
organizations grow, information management becomes both more difficult and more im-
portant. This information takes the form of actual source code but also the documentation
for this code, specifications around the problem the code was initially created to solve, and
who to talk to in an organization to learn more about the code. Well executed software
reuse leads to fewer problems in code, less effort spent correcting problems, and higher
developer productivity [110]. Technologies such as version control [48] have become com-
monplace to help keep track of versions between files and principles like “DRY” (Don’t
Repeat Yourself) are baked into software developers’ minds.
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However, the field of data science presents new and unique challenges in terms of shar-
ing and reuse. The people writing the code come from different backgrounds, the code
itself lives in a variety of formats including raw text files, computational notebooks, and ad
hoc queries, and data permeates the entire analysis process.

Data scientists are a relatively recent role on software development teams, and they
work alongside established roles like software developers, operations, and program man-
agers [13, 84, 86, 107, 108]. In the industrial setting, data scientists are often not directly
responsible for the data they analyze. Their partners, the data engineers, collect, store, and
maintain datasets that data scientists access for their analysis [84, 86]. For teams whose
services use machine learning (ML), data engineers also deploy, scale out, and maintain
ML models that data scientists create [6]. Further, some data scientists work on their own
team’s data, some act as a centralized service working with several product teams, and
some act as consultants working with third-party companies.

A data scientist’s work is often exploratory or ad hoc in nature and involves using
data to craft analyses, models, and visualizations that are reported outside of the coding
environment [86]. At Microsoft, each data science team is free to go about this process
however they see fit which leads to a wide variety of approaches. To scale model and
inference pipelines into production, this process is handed off to adjacent data engineers.

This unique role for data scientists has led to new approaches and problems for code
reuse and sharing. The exploratory, open-ended nature of data science coding impacts the
incentives for investing time into reuse. For instance, if code is only used to answer a one-
off analysis question, there is less incentive to invest the time into making this a reusable
function. Furthermore, reusable code for data analysis must support customization and
adaptation since each data analysis is slightly unique.

In this work, we specifically focus on the reuse of analysis code as it relates to data
science work. This code is almost always coupled with data assets for the analysis, however
we consider the versioning and reuse of data itself outside the scope of our study. Decisions
about the team’s data management are often made at the team level and are subject to
corporate policies, customer agreements, laws and regulations. Data scientists typically
enjoy more agency over the data analysis code than over the data itself. Hence, we focus
on their work practices and pain points around the data analysis code as a topic where the
research community can usefully intervene. Additionally, we focus on the reuse of code
developed within teams or organizations rather than external library use.

By “reuse” we refer specifically to the consumption of code or other artifacts from
previous work. This might be the author of that work reusing their own past analysis or
that of someone else. On the other hand, by “sharing” we refer to the production of code or
other artifacts for oneself and then providing it to someone else for another task. The acts
of sharing and reuse might be viewed as two sides of the same coin; unique practices exist
for both facets.

To provide a better understanding of how data scientists go about both reusing and
sharing past work, we conducted interviews with professional data scientists to understand
their current practices related to sharing and reuse of analysis. From these interviews we
synthesized five different strategies for sharing and reuse that we developed into a survey
to understand how these approaches generalize across a larger population. In the remainder
of this chapter, we first present related work regarding sharing and reuse in data science,
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followed by a discussion of our study methodology. We then discuss the strategies for
reuse and sharing generated from our interviews and survey, along with determinants of
reuse that encourage or discourage sharing and reuse among data scientists. Lastly, we
discuss opportunities for future work to address unmet needs for sharing and reuse in the
practice of data science. In summary, this chapter contributes:

1. Based on an interview study and survey with 149 professional data scientists, we
characterize five primary strategies for sharing and reuse of analysis code.

2. We report our participants’ determinants and obstacles for sharing and reuse practices
and discuss implications for future tools.

3.3 Background and Related Work

3.3.1 Reusing and Sharing in Software Engineering

Reusing and sharing code benefits software developers by saving their time and resources
to build and maintain applications, while maintaining code simplicity [46, 53, 87, 90].
Effective reuse relies on concise and expressive abstractions [90]. Using various form of
abstractions, common strategies for software reuse include high-level languages, ad hoc
code scavenging, and source code components such as libraries [90]. In particular, with
the growth of open source software, library reuse has become a prevalent practice in soft-
ware engineering [1, 63, 139]. Library repositories like NPM and PyPI have facilitated the
sharing, discovering, and management of third-party libraries, which lead to the increasing
usage of third-party libraries among software developers [1, 139]. This huge demand fur-
ther incentivizes the creation and implementation of third-party libraries. However, library
reuse has its limitations. Xu et al. found that developers would replace an external library
with their own implementation if the library is over complicated or not flexible to satisfy
their needs [172]. In data science, code is less formal compared to traditional software
engineering [107]. Although data scientists generally benefit from libraries for performing
common data operations and computations, these libraries tend to be low level. The prac-
tice of sharing and reusing entire analyses or workflows in data science remains unexplored
and worth investigating. Thus, our work aims to reveal the reuse and sharing practice in
data science programming, understand the different reuse decisions between traditional
software engineering and data science, and identify design opportunities for facilitating
reuse to improve work efficiency.

3.3.2 The Process of Data Science

Several researchers have investigated what steps data scientists go through in their work
and how they seek to coordinate their efforts. Machine learning product development in-
volves iterations of a process that begins with gathering model requirements and ends with
model deployment and monitoring [6]. Throughout this process, data scientists, domain
experts, team leaders and software engineers collaborate in unique roles as indicated by
tool use (technical vs non-technical users) [175]. In this process, Jupyter notebook users
tend to think less about future use of their code even though notebooks are touted as a more
readable platform [175].
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Several large scale reviews of computational notebooks have documented that despite
the benefits of computational notebooks, they can encourage bad coding practices because
of unexpected execution order and a lack of modular code [126, 140]. For example, Rule et
al discovered that nearly half of the 1 million Jupyter notebooks they scraped from Github
were uploaded with non-linear execution orders [140]. These notebooks serve a variety of
purposes like data exploration, places to store code, or for ad hoc versioning of analyses.
However, analysts must invest time and effort to clean up their notebook to make it repro-
ducible or reusable by others. Our investigation is distinct in that we take a broader look at
how data scientists specifically reuse and share their work across all platforms.

3.3.3 Tools for Data Science Workflow Management

Several platforms have been developed to help data scientists share code while program-
ming. Git is a widely used version control system that lets users manage version of raw
files for software projects [48]. However git does not work well for comparing versions
of rich text files like computational notebooks. Systems like Verdant augment notebooks
to better support versioning by tracking a user’s analysis history [80]. Our work discusses
unmet needs for sharing and reuse in data science that future tools might address.

3.4 Methods

To better understand the state of the art in sharing and reuse practices in data science today,
we conduced semi-structured interviews with 17 data scientists at Microsoft. To ensure the
generality of our findings, we then developed a survey that was completed by an additional
132 data scientists. Both studies were approved by an Internal Review Board, and all
participants signed consent forms. Interview participants were each compensated with $25
USD gift card. Survey participants were entered into a raffle for three $100 USD gift cards.

3.4.1 Interview Study

For our interviews we recruited 17 participants from a pool of data scientists chosen at
random from the employee database, based on their job titles, levels, and business units. In
particular, we recruited data scientists from software product or service teams and excluded
those from non-product units like Research and Legal. We conducted the interviews in
one-hour sessions where we asked about the participants’ sharing and reuse practices as
an individual and as a member of their team. These interviews were transcribed and then
analyzed for themes. Specifically, two of the authors re-read the transcripts, coded them,
and card sorted the codes to come up with themes. The authors then discussed the themes
until a consensus was reached. The interviews revealed both common strategies for reuse
as well as factors that encourage and discourage reuse. Throughout this chapter, interview
participants are called informants, and their quotes are designated with “IP”.
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3.4.2 Survey

To assess the generalizability of our identified themes, we ran a survey with data scientists
drawn at random from the same pool as the interviews. In total, 132 participants filled out
our survey, out of 563 invited (23% response rate). The survey asked for the following
information:

• Background about the respondent’s years of experience, tool usage, and team size;
• For each of the five strategies:

– Frequency of reuse;
– How the reuse happens (e.g. copy-paste, function call, etc.);
– What functionality is reused;
– How reused work is found;
– Frequency of sharing;
– Additional work required for sharing

• Influences on their willingness to do reuse and sharing
• Best practices and pain points for reuse and sharing

The survey took 10–15 minutes to complete. Throughout this chapter, survey participants
are called respondents, and their quotes designated with “SP”.

3.5 Participant Backgrounds

Our informants (9 male, 8 female) had experience ranging from 2–14 years of profes-
sional data analysis work. All informants were from different teams. They had a range of
educational backgrounds, including fields like statistics, math, or computer science. Our
respondents (85 male, 46 female, 1 did not say) reported a range of professional experience
in data science from 3 months to 35 years, with a mean of 8.6 years.

3.5.1 Study Context

Our study is conducted at Microsoft, a large software corporation. At Microsoft, data
scientists work both on dedicated teams and also within software engineering teams. There
exists little standardization across teams mandating how data scientists must go about their
work. This leads to a wide variety of tool usage and reuse strategies.

3.5.2 Team Composition

The informants are either members of dedicated data science teams, situated within larger
product teams or work on product teams alongside software engineers. The survey respon-
dents report team sizes ranging from 1–22 people, with a mean of 8 people (after removing
outlier responses). However even on teams with many data scientists, most projects involve
only one or two of them: 74% of respondents work either alone or in pairs on projects. An-
alysts communicate with team members throughout their project to communicate results,
seek help, and to find code for reuse (see Section 3.8 for details), however most projects
only involve one or two data scientists actually touching the code or data. This is starkly

15



different from large software projects within Microsoft that may have dozens of developers
iterating on a single, interdependent, code base.

As noted in prior literature, much of the work done by data scientists is exploratory
in nature and their coding practices reflect this. Data scientists will often begin an analy-
sis, but if it turns into something recurring or the model they built must be scaled up for
production deployment, the code will be handed over to an adjacent software engineering
team. Several of our informants expressed admiration for the high quality code produced
on production teams and claimed it was far superior to their own in terms of organization,
commenting, and style. One of our interview participants (IP6) noted that the software
engineers they work with “write pretty fabulous code in terms of readability and actual
usability”.

3.6 Tools shape ability to share and reuse

The interview participants use a variety of tools to do their work. The most popular lan-
guages used were Python, R, a query language for large-scale relational queries (Cosmos/S-
COPE), and a query language for large-scale telemetry data (Kusto Query Language/KQL
[109]). Analysis was done in a combination of computational notebooks (Jupyter, Visual
Studio Code Notebooks, and Databricks) and integrated development environments. How-
ever, even data scientists on the same team rarely used the exact same tool stack. The tool
chosen to write code is often shaped by how and where the data is stored, which in turn
shapes the sharing practices afforded by the tool.

For example, several teams used Databricks for writing their analyses [27]. Databricks
allows code to be written in a variety of languages including Python and R in a compu-
tational notebook interface. Teams using these tools developed reuse strategies around
notebooks such as template notebooks and notebook libraries (Section 3.8.3). Yet other
teams that do most of their analysis using KQL developed strategies to share their work
through the tool where they write their queries.

Lastly, many participants noted that the final output of their work is often not the code
itself. This in turn shapes both the practice of reuse, as well as the incentives to invest in
creating reusable code. Results are presented as PowerPoint presentations, text documents,
or dashboards. This finding is consistent with prior literature about how artifacts of data
analysis are shared outside of the computing environment [175]. The consumers of these
results seldom ask for the code that generated the results they are seeing. This is distinct
from traditional software engineering where the outcome is the code. For data science, the
outcome is the result of the analysis.

3.7 What functionality is reused?

Informants mentioned a variety of tasks for which they share and reuse code. In this section,
we discuss these tasks in aggregate across all reuse strategies, from most to least common
task.

Data preprocessing, transformation, cleaning. The most commonly reused data sci-
ence code is for data preprocessing. This includes cleaning data, transforming data between
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formats, and generally processing data into a usable state before analysis can begin. Since
data analysis pipelines often start with raw, uncleaned sources, reusing code that cleans and
formats data for analysis helps speed up this process and ensures that the cleaning is done
consistently. Reusable cleaning code can also encapsulate idiosyncratic details of how data
is represented in different data sources.

Reading and writing data. The second most common reuse task was reading and
writing data from sources. Since many data sets are too large to fit locally on an analyst’s
machine, data scientists frequently read and write data (samples) from the same data stores
or submit jobs to run on cloud servers. Working in the cloud often involves configuration
details like access keys and resource IDs, which are hard to remember and therefore often
copy-pasted from previous work. Informants also reuse queries that are shared within a
team for commonly accessed data or to make sure different analyses are looking at the
same slice of the data. For example, IP5 mentioned that engineering teams often share a
query to pull anomalous data that needs further analysis: “we interact with the engineers
on the team who can help us understand the telemetry better and identify what is the right
query to use for certain things.”

Modelling and evaluation. Code for creating and evaluating models is also frequently
reused. Data scientists are often creating very similar models since their data is semanti-
cally similar over time. For example, some teams only do time series forecasting and thus
use models appropriate for time series data. Other teams deal with natural language text
data and so use state of the art deep neural nets for language processing tasks. This reusable
modelling code can be individual snippets or entire modelling pipelines.

Data visualization and reporting. Our informants often create similar visualizations
during the course of a project and reuse these across projects. They reuse visualization code
when the data is similar across projects, when the task is similar (for example, showing
model performance), or to reuse the work of finding the desired visualization parameters.
Furthermore, several informants mentioned that they like to maintain a similar style across
their charts so reuse common code to do this styling, depending on which visualization
library they are using. Informants also create dashboard templates for tools like Power BI
to save time and maintain consistency.

Miscellaneous tasks. Various other tasks were mentioned with less frequency, but still
offer some breadth as to what data scientists view as worth sharing and reusing. For in-
stance, some teams focusing on ML model development maintain library functions for post-
processing, model selection, and model ensembling. Others reuse code that runs pipelines
for analysis, composing many of the aforementioned steps together. These pipelines allow
data scientists to iterate faster on models by automating tedious steps such as hyperparam-
eter selection or data formatting.

3.8 Approaches to Reuse and Sharing

Since each informant works on a different team, each reported a slightly different approach
to sharing and reuse in their work, shaped by the kinds of data they used and their team’s
sharing structure. We thematically grouped their sharing and reuse strategies into five dis-
tinct strategies. Some strategies are personal, namely copying previous work and keeping a
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Figure 3.1: We bin usage rate into three categories: daily or weekly usage as Frequent, monthly,
seasonal, or yearly usage as Sometimes, and Never for respondents who never use a strategy. Using
personal past work is the most frequently used strategy, and notebook templates the least frequent.

personal utility library. Other strategies are team-wide efforts: sharing notebooks, creating
template notebooks, and developing shared libraries. Every survey respondent used at least
one of these strategies to share and reuse their code. We discuss three strategies in detail
since they relate to broader elements of data debugging.

3.8.1 Personal analysis reuse

The most basic form of reuse is to look at one’s own past analyses as a reference for current
work. This code is only maintained by a single individual and is not shared. Nearly every
respondent participated in this form of reuse at least sometimes (97%). Local analysis
code is reused for all of the tasks mentioned in Section 3.7, from data processing to model
evaluation. As one respondent (SP63) described, “Anything I know I did before, I reuse it.”

Data scientists find prior work almost exclusively by memory since they are the primary
author of these files. Furthermore, there is a range in which local analysis files are tracked
through version control. Some informants put all of their analysis in a (personal) Git repos-
itory. Though, it is of note that this is primarily so that the code files can be accessed on
another machine rather than to track versions of files. Others leave their analyses on the
local file system.

The majority of analysis code stored locally is reused via copy and paste. A common
case is cloning code from one computational notebook to another, then adjusting the code
to suit the current context. When the reused code is a series of top-level statements rather
than class or function definitions, it cannot be imported and called as an API. (Turning
the reused code into a library is discussed in the next section.) In our survey, the next
most common way of reusing this code was simply looking at it for reference and the least
common was importing the code.

As data scientists work on a variety of projects over time, they store their analysis
code. Often, this takes the form of messy analysis notebooks or scratch files to produce
a certain result for an analysis. These notebooks and files are not cleaned before storage
by adding extra comments or documentation as participants do not necessarily anticipate
reusing them in the future. In this sense, reusing local analysis code is opportunistic reuse
– when the code is initially written the data scientist is not sure if they will use it again in
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the future and does so when the time arises. This also means reusing in this way requires
little effort since minimal prior planning is required.

The benefit, and drawback, of this strategy is its ease – all it takes is putting files in some
form of file structure and then finding relevant files later. Projects that begin in local file
storage might later make it into a different form of reuse if they need to be shared with oth-
ers. This low effort setup can lead to issues like multiple saved versions of the same file or
the same analysis with incremented suffixes (“analysis-v1”, “analysis-v2”, “analysis-v3”,
...). However, since data scientists are searching over code that they wrote they generally
find it easy to find past analysis stored in this form. Several interview informants intention-
ally organized previous analyses by project or data store to aid in future search.

3.8.2 Personal utility libraries

Similar to local analysis code, some participants have developed a personal “utility library”
of common functions or code snippets they find themselves repeating. This utility library is
only used and maintained by a single individual. However, this strategy is distinct from the
local folders of analysis code in that code is intentionally cleaned up before being stored in
the library. The code stored in personal utility libraries is often short (no more than a dozen
lines), restructured into a callable API (class and function definitions), and parameterized
so it can be used in new contexts. This code might be used for all of the different tasks
mentioned in Section 3.7 from data cleaning to visualization.

Since this code has been restructured into a callable API, the most common way re-
spondents use this code is by importing or calling it directly. However, copy and pasting
from the personal utility library is still very common. For such small snippets of code, it
can be just as easy to copy and paste into the development environment such as the current
analysis notebook. In a similar fashion to personal analysis code, most functions in a per-
sonal utility library are found by memory since the author has an intimate knowledge of
the code contained therein.

Data scientists add new things to their personal utility library when they notice they
repeat a task often enough it is worth cleaning up into a reusable function. Over time, this
evolves into a utility library of assorted functions and templates for various tasks:

“These files are just calls which I have been using for three or five years now.
I just constantly go to them again and again and again. So, I extracted these
very, very generic common things in single repo called utils that each file just
does a single thing.” - IP12

Personal utility libraries benefit data scientists by increasing productivity for common
tasks. In particular, the search cost for finding code is very low since data scientists know
what is in the library by memory. The only real cost of maintaining a personal utility library
is the time investment to create reusable components for common tasks. However, since
these libraries are only made for personal use there is little risk that this work will go to
waste.

19



3.8.3 Team shared template notebooks

Typically, computational notebooks have issues of non-reproducible code that limit their
ability to be shared and reused [140]. However, as they have grown into the de facto
tool for data science, users have developed strategies for making notebooks more reusable,
namely through template notebooks.

Template notebooks are normal computational notebooks that have been cleaned up
and generalized for a certain task. This cleaning can take many forms. Some teams put
parameters at the top of the notebook and leave “TODOs” in the comments to fill in these
parameters before running the notebook like a function. Over time, each of these task-
specific notebooks come together as a sort of “library” for common code on the team.
These notebooks are intentionally cleaned so that they will run top to bottom without issue.
In this way, template notebooks are run more like a traditional python script rather than
an interactive notebook. Several informants also discussed using the %run command in
Databricks, which allows one notebook to invoke another like a function, including param-
eter passing.

Alternatively, a single notebook may contain numerous common functions in a note-
book as a library (NAL). For example, IP6’s team has a centrally shared Databricks note-
book that has numerous commonly used functions. These functions are cleaned and ab-
stracted before addition to the NAL. Yet when these functions are reused, they are copy
and pasted out of the shared notebook rather than imported. This notebook is essentially
a traditional software engineering library – similar functions grouped together under one
umbrella. However it lives in same place analysts do their work.

Some tools have extra functionality that supports the use of template notebooks and
NALs. For example, Databricks allows notebooks to be parameterized so that they can be
run as a function (top to bottom) with new parameters or a default value (see [28] for more
details on this syntax). Some of our informants have developed whole analysis pipelines
using this functionality where one notebook does data cleaning and then calls another note-
book to do modelling, and so on.

Template notebooks were used least frequently among the surveyed responses. This can
be attributed to two main factors. The first is that not every notebook shared with teammates
is a template notebook. Past analyses that are tightly coupled with a particular data source
are shared on team-wide stores but unless they are cleaned to the extent they can be run
independently, they are not a template. Secondly, there is limited tool support for template
notebooks outside of the Databricks environment, which was used on a limited number
of teams. Adding TODO comments to Jupyter notebooks was one alternative strategy,
however executing Jupyter notebooks as a function is uncommon.

Template notebooks are most commonly accessed from Git repositories for Jupyter
based templates or within an analysis ecosystem such as Databricks, where tool features
best support reuse. Even for notebooks stored in a version-controlled Git repository, par-
ticipants seldom use common Git operations like branching and merging. Rather, they use
Git as a remote store for their work that others have easy access to, more similar to any
cloud storage location. Several participants even mentioned they are not very comfortable
with Git workflows and it is something they would like to work on.

Code is most commonly reused by copy and paste or (if the tool supports it) by calling
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the code directly. As is the case with all forms of shared code artifacts, the most common
way among survey respondents to find relevant notebook templates is by communicating
with teammates. However, the next most popular response was based on memory indi-
cating that most shared notebooks are for small, modular tasks that data scientists easily
remember.

Our interview informants mentioned that most notebook template additions are done
by a select few members of their team. However, everyone has the ability to share new
templates. The division between reuse versus sharing frequency also holds for notebook
templates: the modal response for adding new template notebooks is seasonally, whereas
they are most commonly used weekly.

Why do data scientists use shared template notebooks rather than a library? One reason
is that template notebooks are more compatible with where they do most of their work. If
a reused notebook contains lots of visualization or table output, this most easily re-run as
a notebook rather than a separate library. Another reason for template notebooks is that
they support tweaking the code to the analysis at hand. As SP131 says, they use template
notebooks “when the code requires customization when applied to different scenarios.”
Another motivation, from SP46, is that template notebooks are useful for “Just about any
situation involving analytics. Sharing notebooks is far easier and portable than making a
code library. For Data Scientists at least.”

Creating template notebooks is often faster than creating a traditional library. For ex-
ample, survey respondents mentioned they chose to create template notebooks because of
“Extreme time constraint which limits the time I can spend on doing things the right way”
(SP43) or “Most of the time because the flow is easier” (SP24).

3.9 Discussion

In preceding sections, we have presented interview and survey results on how data scientists
go about sharing and reusing past analysis; here we delve into a discussion of why. We
also distinguish how reuse in data science is distinct from reuse in traditional software
engineering and present opportunities for future tools to improve the experience of sharing
and reuse in data science.

3.9.1 Code Is Not the Deliverable in Data Science

Throughout our interviews and survey, data scientists repeatedly mentioned how the code
that they write is separate from their project deliverables. In data science, the outcome
of an analysis is not the analysis code itself, but whatever insights, models, or datasets
are produced from that analysis. These insights are delivered through slide decks, word
documents, and interactive dashboards. However, the consumers of these artifacts rarely
care about the analysis code itself or might not have the technical skill set to understand all
the code that went into producing the analysis output. Future tools might investigate how
to tie presentation artifacts such as charts or tables back to the code and data used to create
the artifact to help speed up this iteration cycle and support reuse at the presentation level
as well.

21



Furthermore, many analyses are one-off, unrelated requests. Non-code deliverables and
one-off analyses ostensibly combine to create disincentives for sharing and reuse. Despite
this, reuse and sharing are still very common. Data scientists realize how much reusing past
analyses improves their productivity by avoiding re-work. This different incentive struc-
ture leads data scientists to adapt common software engineering reuse strategies to their
needs. The reuse of personal code and team wide libraries have strong parallels with typ-
ical software reuse whereas personal utility libraries, shared analysis stores, and notebook
templates developed out of the unique needs for code reuse in data science. Future work
might attempt to quantify the benefits of reusing past code, for instance in terms of the time
required to complete an analysis.

3.9.2 Need for Modular and Reusable Data Science Tools

Given the need for customization, it is difficult to create modular data science analysis
components. Libraries are typically used for components that change little over time, like
data access APIs. However full analyses need to be customized almost every time and so
are more likely to be shared using a customizable interface like a computational notebook.

There are few tools that support this kind of interaction. The best example in the tools
surveyed was the %run syntax in Databricks for running notebooks as functions discussed
in Section 3.8.3. This feature allows the parameterization of notebooks. However, if note-
books need to be customized beyond the available parameters, data scientists will often just
clone and edit the notebook.

Observable offers a notebook style interface for JavaScript programming that lets users
import cells from any other Observable notebook [17]. Observable is most often used for
visualization creation; future work might explore how cell-level imports can aide shar-
ing and reuse in other data science programming environments. Additionally, future tools
might investigate how to combine modularity at the functional level with modular analyses
that can be customized to the current data by allowing the addition or deletion of entire
analysis steps.

3.10 Limitations

Our interviews and survey are subject to several limitations. We only interviewed data
scientists from a single company with a relatively mature data science practice. However,
even within one company not every data science team had uniformly mature reuse practices.
We expect these results will generalize to other data scientist populations; some of the
issues described may even be felt more acutely by smaller organizations with less organized
data science practices. However, future work might explore this explicitly. For our survey,
incorrect branching logic caused not all participants to see the Likert rating questions at the
end. We report all survey results as percentages of those that responded; skipped questions
or no responses are excluded from reported counts.
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3.11 Conclusion

This chapter presents the results of 17 interviews and a 132 person survey and how and
why data scientists reuse the code they write for analysis. Our investigation revealed data
scientists reuse work through five strategies ranging from ad hoc reuse of their personal
code to template notebooks for a task. Furthermore, the difficulty in creating modular,
reusable code components that work within current tools underlies why code reuse is more
challenging in data science than traditional software engineering. This study highlights
the need for general purpose tools that fit into data scientists’ existing workflows and
handle common, repetitive tasks.

The strategy of template notebooks highlights how code reuse is most powerful when
coupled with the ability to interact and customize. Participants would craft template note-
books for a task like exploring their data, but often times data exploration requires further
interactions with the data that are not in the original template. We build on this insight in
the following chapters to create tools that offer initial data views to speed up exploration,
but also are flexible enough to interact with the data in order to ask task-specific questions.
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Chapter 4

AUTOPROFILER: Continuous Data Profiling for
Tabular Data

This chapter is adapted from the following published paper:

[36] Will Epperson, Vaishnavi Gorantla, Dominik Moritz, and Adam Perer. “Dead or Alive:
Continuous Data Profiling for Interactive Data Science”. IEEE VIS. 2023.

Figure 4.1: In AUTOPROFILER, data profiles update whenever the data in memory updates. This
enables a fast feedback loop between (1) authoring new code to transform a dataset and (2) immedi-
ately profiling the results. AUTOPROFILER also includes interactions for writing insights from the
interface back to code, such as exporting charts.

4.1 Summary

This chapter introduces two of the core technical contributions of interactive data profiling:
providing automatic data profiles and facilitating fast feedback after interactions. We intro-
duce the idea of continuous data profiling as a process that allows analysts to immediately
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see interactive visual summaries of their data throughout their data analysis to facilitate fast
feedback while programming with data. AUTOPROFILER supports continuous data profil-
ing by: (1) automatically displaying data distributions and summary statistics to facilitate
data comprehension; (2) including live updates where overview visualizations are always
accessible and react to data updates; (3) supporting follow up analysis and documentation
by authoring code for the user back to the notebook. In a user study with 16 participants,
we evaluate two versions of our system that integrate different levels of automation: both
automatically show data profiles and facilitate code authoring, however, one version up-
dates reactively (“live”) and the other updates only on demand (“dead”). We find that both
tools, dead or alive, facilitate insight discovery with 91% of user-generated insights orig-
inating from the tools rather than manual profiling code written by users. Participants
found live updates intuitive and felt it helped them verify their transformations while those
with on-demand profiles liked the ability to look at past visualizations. We also present a
longitudinal case study on how AUTOPROFILER helped domain scientists find serendipi-
tous insights about their data through automatic, live data profiles. This system lays the
groundwork for how to design interactive data profiling UIs that augment programming
workflows.

4.2 Introduction

In recent decades, data analysis is no longer bottlenecked by the technical feasibility of
executing queries against large datasets, but by the difficulty in choosing where to look
for interesting insights [11]. Interactive programming environments such as Jupyter note-
books help since they support fast, flexible, and iterative feedback when programming with
data [5, 123]. However, while these coding tools were designed to track the state of pro-
gram execution and variables for debugging, they were not inherently designed to track
how data is manipulated and transformed. This forces users to manually make sense of and
write additional code to explore their data.

Exploratory Data Analysis (EDA) is critical to understanding a dataset and its limita-
tions and is a common task at the beginning of a data analysis [157, 165]. Yet the manual
effort required to construct data profiles for EDA takes up a significant part of data ana-
lysts’ time: recent surveys of data scientists show that they spend almost 50% of their time
just cleaning and visualizing their data [8]. Since data profiling is so time intensive, it is
easy for users to skip over important trends or errors in their data. This can lead to neg-
ative downstream consequences when this data is used for modeling and decision-making
[141]. In particular, many data quality issues are potentially silent: models will still train
or queries will execute, but the results will be incorrect [64]. For example, in the data pro-
file of apartment prices in Figure 4.1 we can see that some apartment prices have negative
values. If these values are not addressed, analyses or models that use this data may lead to
wrong decisions.

We propose continuous data profiling as a process that allows analysts to immediately
see interactive visual summaries of their data throughout their data analysis to facilitate fast
and thorough analysis. To explore how automated tools can best support continuous data
profiling, we have built a computational notebook extension AUTOPROFILER that tightly
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integrates data profiling information into the analysis loop. AUTOPROFILER maintains the
advantages of the interactive notebook programming paradigm, while giving users immedi-
ate feedback on how their code affects their data. This tightens the feedback loop between
manipulating data and understanding it during data programming.

We explore three main features in AUTOPROFILER. First, it automatically displays
profiling information about each dataframe and column to facilitate data understanding.
By showing data distributions and summaries, AUTOPROFILER jump-starts a user’s EDA.
Second, when the data in memory updates, the profiling information updates accordingly.
“Live” updates in user interfaces have been shown to reduce iteration time [104]; with AU-
TOPROFILER we apply this concept to data profiling to understand how it helps facilitate
data understanding. Third, although AUTOPROFILER eliminates the repetitive work of au-
thoring data profiling code, users still need to be able to conduct flexible follow-up analysis
and persist interesting findings in their notebook [140]. AUTOPROFILER supports this by
authoring code for the user through code exports to help users quickly select subsets, find
outliers, or author charts.

We present two complimentary evaluations of AUTOPROFILER. In a user study with 16
participants, we evaluate two levels of automated assistance to see how different versions of
the tool help users find errors and insights in their data. Half of the participants used AUTO-
PROFILER (a “live” profiler) and the other used a version that presents the same information
but in a static, inline version (which we denote as “dead”). In this evaluation, we found that
users experience similar benefits from both versions of the tool, “dead” or “live”, and gen-
erate 91% of findings from the tools as opposed to their own code. Participants found live
updates intuitive and felt it helped them verify their transformations while those with static
profiles liked the ability to look at past visualizations. Furthermore, participants described
how the systems sped up their analysis and exports facilitated a more fluid analysis. In our
second evaluation, we conducted a long-term deployment of AUTOPROFILER with domain
scientists to use the system during their analysis. These users described how the “live”
system enabled them to find and follow up on interesting trends and how AUTOPROFILER

facilitated serendipitous discoveries in their data by plotting things they might not have
checked otherwise. We discuss how future automated assistants can build on AUTOPRO-
FILER to augment data programming environments. AUTOPROFILER is open-sourced and
available for use1.

In summary, this chapter makes the following contributions:

1. We demonstrate the benefits of continuous data profiling with AUTOPROFILER, which
supports data programming with automatic, live profiles and code exports.

2. We evaluate this tool in a controlled study and demonstrate how continuous profiling
helps analysts discover insights in their data and supports their workflow.

3. We also present a longitudinal case study demonstrating how AUTOPROFILER leads
to insights and discoveries during daily analysis workflows for scientists.

1https://github.com/cmudig/AutoProfiler
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4.3 Related Work

Our work builds on prior literature on assisted data understanding, live interfaces, and
linking GUI and code interfaces.

4.3.1 Data understanding is critical yet cumbersome

Understanding data and its limitations has long been an important, but often overlooked,
part of analysis. Data understanding is difficult because of a variety of factors, including
that data updates quickly in production environments, so automated methods and alerts
have a high number of false positives [144], current popular tools require manual data
exploration and become messy [123], and as datasets have grown, there are a large number
of issues to check for. Prior systems in the visualization community have addressed parts
of this space such as comparing data over time as models are trained on subsequent data
versions [67] or methods for cleaning up notebooks during analysis [58]. However, more
work is needed to understand how tools can facilitate discovering data and potential quality
issues before they propagate to downstream models or analyses.

4.3.2 Prior assisted and integrated EDA tools

Prior visualization systems aim to automate the visual presentation of data to speed up data
understanding. In general, this automation helps alleviate the burden of specifying charts
so that users can focus more on insights rather than how to produce a specific chart [59].
Some systems automate visual presentation and then rank charts according to metrics of
interest such as high correlation [32], charts that satisfy a particular pattern in the data
[147], or contain attributes of interest [167]. Closely related to our work is the Profiler
system, which checks data for common quality issues such as missing data or outliers, and
presents potentially interesting charts to the user [76].

However, many of these systems exist in standalone tools, making them difficult to
integrate into flexible data analysis workflows in programming environments like Jupyter
notebooks [5]. Other systems have explored how to integrate visualization recommen-
dations in the notebook programming context as well through visualization callbacks, li-
braries, embedded widgets, and similar notebook search [97, 125]. Lux [95] and other open
source tools [14, 55, 120, 138] show EDA information on demand for individual Pandas
dataframes. While Lux uses “always on” visualization recommendations to overwrite the
default table view for pandas dataframes, users must still ask for visualizations by call-
ing a dataframe explicitly. Diff in the Loop [161] presents a paradigm for automatically
visualizing the differences between dataframes after each step in an analysis. Although
these prior systems use automatic visualization, they still require the user to manually ask
for this information after each data update and often present an abundance of information
that can be difficult to compute in reactive times and for users to parse quickly. With AU-
TOPROFILER, we explore the benefits and design constraints around coupling automatic
visualization with live updates and code authoring on the user’s behalf.
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4.3.3 Liveness in user interfaces

Fast iteration on data and models is a key element to effective data science [44, 144]. The
fast, incremental feedback that users receive in Jupyter notebooks is part of the popularity
of the platform [38, 123], yet the default presentation of data feedback in Jupyter is limited
to a handful of rows. “Liveness” in user interfaces reduces iteration time through reac-
tive updates [104], such as in spreadsheets [65]. Prior studies of liveness in data science
tools have compared live interfaces to REPL (read-eval-print-loop) interfaces like Jupyter
and found users like the responsiveness and clean coding that live interfaces afford [31].
Inspired by the affordances of live, reactive updates, AUTOPROFILER evaluates how au-
tomatically updating data profiles after a user changes their data can help reduce iteration
time during analysis. When using AUTOPROFILER in Jupyter, users must still explicitly
execute their code to manipulate the data, thus it is not a completely “live” environment.
However, data profiles reactively update when data changes.

4.3.4 Linking code and GUI interactions

There is a tradeoff between tools that support using code to interact with data or direct
manipulation. Programming languages are flexible and expressive, yet GUIs are responsive
and easy to use [5]. Prior systems in the notebook setting have bridged this gap by writing
interactions with a chart [170] or widget [82] back to the notebook automatically. This
allows users to reuse analysis code and preserves the steps of their analysis. Selection
exports in AUTOPROFILER serve a similar purpose of facilitating drill down into rows of
interest in a dataset. Our code authoring approach differs from prior systems since we only
write code to the notebook explicitly when the user asks, rather than implicitly after every
interaction to avoid polluting the user’s notebook.

Beyond their flexibility, programming languages remain popular for data science be-
cause they allow users to reuse old analysis code for new purposes [79], or use analysis
“templates” to help users go through the same steps of analysis for similar tasks [38]. AU-
TOPROFILER’s template exports serve a similar purpose to author code in the notebook
and support follow-up analysis for tasks like customizing a plot, doing outlier analysis, or
investigating duplicates.

4.4 Design Goals

We developed the following design goals to inform our system:

G1: Automatic & Predictable: Basic data profiling information should be visualized au-
tomatically without any need for extra code in a consistent manner.

G2: Live: When the data updates, so should all visualizations of it. This prevents “stale”
data visualizations in a notebook and allows data profiles to be accessible throughout
an analysis.

G3: Non-intrusive: Since users are writing code to interact with their data, automatic
visualization should not interfere with their flow.

G4: Initiate EDA: Data profiles should present a starting point for understanding each
column, which can inform follow-up analysis.
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G5: Persistence: Tools should support writing findings to the notebook to enable repro-
ducible and shareable analysis.

G1 and G2 were motivated by the manual EDA which is the current status quo in note-
book programming. We build on prior techniques in live interfaces [104] and automatic
visualization [59, 95] to speed up the data profiling process and enable continuous data pro-
filing. This eliminates the need to write repetitive profiling code to understand dataframes
after each update. Importantly, we show the same profiling information for each type of
column and visualize the data “as is” in order to facilitate finding issues (G1). With live
updates, we situate our profiler alongside the programming environment rather than inline
(G3) so that it does not take programmers out of their analysis flow [45]. This also helps
declutter the programming environment since most preliminary visualization can be done
in the sidebar. We make the design choice to show univariate profiling information to help
users jump-start their EDA process (G4). Previous profiling systems often require scrolling
to look through multiple pages of charts [95, 120], making it hard to find interesting prob-
lems or insights. Our goal is to facilitate rapid data understanding with data profiles, then
allow users to do further custom analysis by handing off their analysis back to code through
exports. Code exports also facilitate saving findings such as charts or code snippets to the
notebook so that notebooks can be shared and reproduced (G5), a core goal in notebook
data analysis [140].

4.5 Continuous Data Profiling with AUTOPROFILER

AUTOPROFILER provides data analysts rapid feedback on how their code affects their data
to speed up insight generation. The system fits into a common existing workflow for anal-
ysis: using Pandas in Jupyter. Pandas is the most popular data manipulation library in
Python, with millions of downloads every week [119]. Likewise, computational notebooks
in Jupyter have become the tool of choice for data science in Python [123]. AUTOPRO-
FILER focuses on Pandas users in Jupyter with the goal that features that support this work-
flow will generalize to other dataframe libraries such as Polars [128] or Arrow [9], as well
as other notebook programming environments. The AUTOPROFILER system has three core
features that enable continuous data profiling: automatic visualization (Subsection 4.5.1),
live updates (Subsection 4.5.2), and code exports (Subsection 4.5.3).

4.5.1 AutoProfiler shows initial EDA automatically

AUTOPROFILER detects all Pandas dataframes in memory and presents them in the sidebar
of the notebook. Each dataframe profile can be shown or hidden, along with more infor-
mation about each column. This allows users to drill down into dataframes and columns
of interest to see more information, providing details on demand. By situating AUTO-
PROFILER in the sidebar it also allows users to simultaneously look at both summary data
profiles of their data in AUTOPROFILER and the default instance view inline from Jupyter.

We use the Pandas datatype of the column to show corresponding charts and summary
information. We categorize the Pandas datatypes into semantic datatypes of numeric, cat-
egorical, or timestamp columns similar to previous Pandas visualization systems [39, 95].
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Column profiles for each of these three data types are shown in Figure 4.2. Each column
profile has three core components:

1. Column Overview which contains the name, data type, a small visualization, and the
percentage of missing values.

2. Column Distribution which is shown by clicking on the overview to reveal a larger,
interactive visualization of column values.

3. Column Summary that has extra facts about a column such as the number of outliers
or duplicate values.

The overview, distribution, and summary shown depend on the data type of the column.
Furthermore, the distribution and summary can be toggled on and off to show more details
on demand [146]. This is important for large dataframes with many columns, or when
there are many dataframes in memory to prevent unncessary scrolling. Many visual el-
ements show hints on hover to further prevent visual clutter, providing further details on
demand. Our core charting components were adapted from the open-source Rill Developer
platform which shows data profiles for SQL queries [135]. We use the same visualizations
in AUTOPROFILER with extra summary information and linked interactions to connect the
profile to the notebook.

Quantitative Columns

For quantitative columns like integers and floats, we show a binned histogram so that users
can get an overview of the distribution of the column. This histogram is shown in the
column overview as a preview; a larger and interactive version is presented upon toggling
the column open. On hover, users can see how many points are in each bin. We also show
numerical summary information like the min, mean, median, and max of the column. This
is similar to what is presented in the describe() function in Pandas to give a numeric
summary of a column. In Figure 4.2 (left), we demonstrate this information for a price
column where we can see that some of the prices in this distribution are negative, a potential
error that should be inspected during analysis.

If users want to see more information, they can toggle the summary to see potential
outliers, whether the column is sorted, and the number of positive, zero, and negative val-
ues. We use two common heuristics to detect outlier values. The first is if a value is greater
than 3 standard deviations from the mean; the second is if a point falls outside of 1.5∗IQR
away from the first or third quartile. Both forms of outlier detection code can be exported
to code which allows users to investigate potential outliers more or change these thresholds
for classifying the outliers with their code manually.

Categorical Columns

For categorical or boolean columns, we first show the cardinality of the column in the
overview to let users understand the total number of unique values. Once toggled open,
the distribution view shows the frequency of the top 10 most common values. This is
similar to the commonly used value_counts() function in Pandas which shows the count
of all unique values. In the categorical summary, we show extra information about the
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character lengths of the strings in the column along with a more detailed description of
the column’s uniqueness. This uniqueness fact can be exported to code which lets users
inspect duplicated data points. Once again, users can export a selection to code in the
notebook to quickly filter their dataframe. For example, in Figure 4.2 (center) we show
the information for the categorical column “county”. This column has some default values
of "---" that seem like an error, so a user can click “Export rows to code” to have the
code df[df.county == "---"]written to their notebook and can investigate these rows
further. Once this new code is written to the notebook, the user can look at this subselection
in AUTOPROFILER or with their own Pandas code.

Temporal Columns

Our last semantic data type is for temporal columns, where we also show a distribution
overview so users can see the count of their records over time. In the larger distribution
view, users can hover over this chart to see the count of values at a particular point in time.
We also show the range of the column and if the column is sorted or not. Users can drag
over a selection of the column to zoom into the time range more in the visualization. We
plan on adding selection exports to temporal columns in the future. In Figure 4.2 (right),
we show the profiling information for a date column where a user can observe that the
records in their dataset span 17 years, however are not evenly distributed with large spikes
in certain years such as early 2012.

Temporal ColumnQuantitative Column Categorical Column

Figure 4.2: AUTOPROFILER shows distributions and summary information depending on the col-
umn type. For quantitative columns, we show a binned histogram along with summary statistics.
On hover, the user can see the count in each bin or export the selection to code. We also show a
summary with extra information like potential outliers that can be exported to code. For categorical
columns like strings or boolean values, we show up to the top 10 most frequent values. On click,
the selection can also be exported to code. For temporal columns, we show the count of records
over time and the range of the column.

4.5.2 Live Data Profiles

Beyond showing useful data profiling information just once, AUTOPROFILER updates as
the data in memory updates. Once a new cell is executed, AUTOPROFILER recomputes the
data profiles for all Pandas dataframes in memory and updates the charts and statistics as
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necessary in the interface. With live updates, AUTOPROFILER always shows the current
state of all dataframes currently in memory in the notebook, allowing users to quickly
verify if transformations have expected or unexpected effects on their data. Figure 4.3
shows this update when a string column is parsed to numeric. Here, Pandas initially parses
this column as an object data type but when the user turns the column into an integer the
distribution and summary information is updated. Live updates help users verify a wide
range of transforms. For example, after updating the types of columns, applying filters, or
dropping “bad” values.

AUTOPROFILER has several UI elements to help users track and assess changes after
updates. The first is that when a user hovers over a column in any dataframe, if other
dataframes have columns with the exact same name they are highlighted. For example,
if a user takes the dataframe df, filters it to df_filtered, and then hovers on the Price
column the linked highlights help the user make a visual connection between the two Price
columns. With automatic dataframe detection and visualization, there can potentially be
many dataframes in memory as users manipulate their data over an analysis. AUTOPRO-
FILER supports sorting dataframe profiles to find those of interest. By default, the most
recently updated profiles are shown at the top of the sidebar. A user can also sort alpha-
betically by the dataframe name. Furthermore, users can pin any profile so that it always
appears at the top of the sort order.

Dataframe profiles are typically only shown for dataframes explicitly assigned to a
variable with one exception: if the output from the most recently executed cell is a Pandas
dataframe we will compute a profile for it with the name “Output from cell [5]”. On the next
cell execution, these temporary profiles are removed. This fits into a common notebook
programming workflow where users display their dataframe after making a transformation
to see how the data has changed.

4.5.3 Exports to code

In addition to interactive data profiles, AUTOPROFILER assists users in authoring code.
AUTOPROFILER facilitates code creation in two ways: selection and template code exports.
For both of these, a user clicks on a button or part of a chart and AUTOPROFILER writes
code for them in the notebook below the user’s currently selected cell. All code export
snippets are pre-built into AUTOPROFILER and produce the same code snippet for each
task with the dataframe and column names filled in so the code is ready to execute in the
notebook.

Selection and template exports only differ in the kind of code they produce. Selection
exports allow users to export selections from charts to help them filter their data, as men-
tioned in Subsection 4.5.1. For example, Figure 4.2 (left and center) demonstrates how a
user can export selections from categorical and numeric charts to quickly filter their data.
This helps users more quickly iterate on ideas during analysis to spend less time writing
simple code and proved very popular in our user study.

AUTOPROFILER authors more complex code like charts or code to detect outliers with
template exports. Code exports for these tasks are still relatively simple, only exporting
up to 10 lines of code. However, this saves users from having to remember how to author
a chart themselves or compute outliers. Users can then easily edit this code, for example
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2 User writes code to make numeric

1 Pandas parses sqft as a string

3 AutoProfiler immediately updates

Figure 4.3: AUTOPROFILER updates the data profiles shown as soon as the data updates. In this
example, Pandas parses the sqft column as a string type since some of the values initially have
strings in them. Once the dataframe df updates in memory, AUTOPROFILER will update the profile
shown. This way the user can see their transformation was successful, inspect the distribution of
sqft, and even notice that the number of nulls increased by 0.3% after this parse.

to customize their visualization or change the threshold for an outlier. Prior work has
discovered how data scientists often re-use snippets of code across analyses to help them
speed up their workflows [38, 79]. AUTOPROFILER’s exports serve as a form of these
pre-baked “templates” for analysis steps. The other benefit of this type of export is that it
helps preserve analysis in the notebook in the form of code, which supports more replicable
analyses in notebooks, a common goal [126].

This linking between analysis in a visual analytics tool and notebook code has been
introduced in previous systems such as Mage [82] and B2 [170]. Our goal here is similar:
to support tight integration between GUI and code. However, our approach differs slightly
in that we only write code to the notebook when the user explicitly clicks a button to prevent
polluting the user’s working environment.

4.5.4 Implementation and Architecture

AUTOPROFILER is built as a Jupyter Lab extension to augment a normal interactive pro-
gramming environment with a data profiling sidebar. Figure 4.4 shows the components
involved in a example live update loop. When a user executes new code, the kernel sends
a signal that a cell was executed (step 1). AUTOPROFILER then interacts with the kernel
to get all variables that are Pandas dataframes, and requests data profiles for each of these
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variables (steps 2 - 4). When a user requests to export code, a new cell is created with
the code (step 5). This is only a UI interaction, and when the user executes the generated
cell, the update loop will trigger again. Whenever the kernel is restarted, the dataframes in
memory are cleared so the profiles in AUTOPROFILER reset.

As a Jupyter extension, AUTOPROFILER can be easily installed as a Python package
and included in a user’s Jupyter Lab environment. This easy installation has proven very
popular with users of our system. The frontend code for AUTOPROFILER uses Svelte [154]
for all UI components.

All profiling functions are written in Python and execute code in Pandas. Pre-binning
distributions in python makes serialization faster to avoid serializing entire dataframes.
Since our profiling happens in Pandas, the performance of AUTOPROFILER generally scales
with the capabilities of Pandas.

The scalability of our approach is primarily impacted by two main considerations: the
number of columns in each dataframe and number of dataframes in memory. Pandas can
still execute a single query relatively quickly for dataframes with up to millions of data-
points, and we consider a full benchmarking of pandas queries outside the scope of this
work. Since requests to the Jupyter python kernel are currently executed serially, larger
requests for dataframes with many columns or more dataframes in memory make updates
slower. The AUTOPROFILER UI is not affected by the size of the underlying data since
the queries return binned data counts or summary statistics so the UI remains responsive, it
simply takes longer to fetch new data for larger or more dataframes. We have included sev-
eral performance tweaks to make AUTOPROFILER usable for real workflows. For example,
we do not calculate updates when the AUTOPROFILER tab is closed to avoid unnecessary
computation.

The scalability of AUTOPROFILER can be improved with further engineering improve-
ments. For example, the requests for profiling queries could be executed in parallel by aug-
menting the Jupyter kernel. Furthermore, faster query execution system like DuckDB [130]
can speed up the response on individual queries over pandas. For particularly large datasets,
the distributions and statistics could be estimated from samples.

4.6 Evaluation: User Study

We demonstrate the effectiveness of AUTOPROFILER in two ways. In this section, we
discuss the results of a user study comparing two levels of automation support with AU-
TOPROFILER and in Section 4.7 we discuss the results of a longitudinal case study of users
with AUTOPROFILER.

4.6.1 Participants

To evaluate how AUTOPROFILER helps data analysts in a sample data analysis task, we
recruited Pandas and Jupyter users for a between-subjects user study. We recruited 16 par-
ticipants from social media and our networks who were experienced data analysts. Our
inclusion criteria required that participants be regular Pandas and Python users. Our par-
ticipants had 2 to 12 years of experience doing data science (mean 4.8 years), and were
all regular Python and Pandas users who frequently used Juptyer. The typical participant
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Figure 4.4: AUTOPROFILER profiling workflow. Data profiles are computed reactively when a user
executes new code. Profiling is done in the kernel to speed up performance and avoid serializing the
entire dataframe.

reported doing data analysis weekly and using Pandas daily, with all participants using
Pandas at least monthly. Our participants worked in a variety of industries including au-
tonomous vehicles, data journalism, and finance with job titles including data analyst, data
engineer, post-doc, and researcher.

4.6.2 Research Questions

We had three primary research questions in our user study:

Q1. Live updates: Does a profiler with live updates lead to more insights found than one
with manual updates?

Q2. Starting point for EDA: Does automatically providing visual data profiles lead users
to write less code, and is this information helpful?

Q3. Linked code and GUI: How does code exporting facilitate handoff for follow-up
analysis?

These research questions correspond to the main features of our tool. We test how
different levels of automation support continuous data profiling for Q1 by comparing the
number of insights found through a profiler with live updates to one that required manual
invocation. With Q2, we explore our design choice of showing a starting point for data pro-
filing. To answer this question we measure how many insights participants found through
our tools versus their own code and their qualitative perceptions of each tool version. Fi-
nally, to answer Q3 we measured how often exports to code are used during analysis and
participants’ perceptions of this feature.

35



In order to answer these research questions, we ran a between-subjects user study with
two versions of our tool. We elected for a between-subjects design since data analysis
requires time to do well and we found during pilots that having participants analyze two
separate datasets was infeasible and the quality of analysis on the second task was signif-
icantly worse. We also noticed a large learning effect in pilot studies when participants
analyzed two datasets back to back.

4.6.3 STATICPROFILER

In our study, one condition used AUTOPROFILER with live profiles, automatic updates, and
code exports. For our other condition, participants used a static version of the tool which
we call STATICPROFILER which requires manual invocation. STATICPROFILER allows us
to test how different levels of automation support continuous data profiling. The interface
shows the exact same information as AUTOPROFILER, however, it must be called manually
with plot(df) and does not update automatically with data updates. The same profiles
for each column are presented in an inline interactive widget with the ability to hand off to
code in the notebook. This sort of manual invocation is similar to other Pandas visualization
tools in notebooks [95, 120]. A screenshot of the STATICPROFILER tool is included in the
appendix.

We compare AUTOPROFILER with STATICPROFILER rather than other open source
tools since STATICPROFILER includes largely the same information as other tools but the
UI design is the same as AUTOPROFILER. Our goal with this comparison was to isolate the
effects that live updates have on continuous data profiling (Q1) and evaluate Q2 and Q3
through logs and interviews across both system versions. We compare AUTOPROFILER to a
non-live updating tool, STATICPROFILER, instead of a baseline of no tool since participants
could write any extra code in the study notebook and did not have to use the tools. This
allowed us to evaluate how different designs impacted tool use and how a tool augmented
a typical programming workflow.

4.6.4 Procedure and Task

In both conditions, participants were first shown a demo of the tool version they would
be using (AUTOPROFILER or STATICPROFILER). Each participant then analyzed the same
dataset during the task. The dataset was a sample of a larger dataset of apartment listings
from craigslist [122] with extra “errors” added2. The task dataset had 1,942 rows and 13
columns. We sampled the dataset to a smaller size so we could be more confident that our
rubric covered the majority of important insights and errors in the data.

We had 13 pre-known insights/errors that we measured to see how well participants
could explore the data and find these insights as an inital “rubric” of task performance. Ad-
ditionally, we included three extra insights and errors that participants found during their
exploration. A detailed description of each insight/error that we measured is in Table 4.1.
The categories of errors in this dataset were inspired by prior studies that group dataset
errors into common types[76]. Our first 10 dataset errors are issues of missing data, in-
consistent data, incorrect data, outliers, and schema violations. Inconsistent data refers to

2Task dataset: https://github.com/cmudig/AP-Lab-Study-Public
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data with inconsistencies like variations in spelling or units; incorrect data is parsed as the
wrong data type or has default values like dashes or empty strings. In addition to errors that
might jeopardize an analysis if not discovered, we also measured how well participants
discovered several broader insights in the dataset. Building off past definitions of dataset
insights as unexpected, qualitative findings rooted in the data [116], we broadly consid-
ered insights as findings about the data that did not fit into one of the aforementioned error
buckets and are important to know before the dataset is used for a downstream task. We
initially included three general insights such as the scope of the dataset, realizing skewed
distributions, and investigating correlations. While these errors/insights are by no means
exhaustive of everything of interest in our dataset, they provide a common “rubric” that
we could evaluate participants against. We consider this rubric indicative of things that
should be found in a proper EDA of the dataset, regardless of the tool being used. With the
exception of insight 13 about correlations, all of these findings can be seen in the AUTO-
PROFILER or STATICPROFILER interfaces.

Participants were asked to explore and clean the data under the guidance that this dataset
was recently acquired by a colleague who wants to build a predictive model of apartment
prices. Participants were asked to clean and produce a report about the dataset in the note-
book that would be handed off to their colleague. Participants were told there were at least
10 errors in this dataset that they should try to find and fix to encourage critical engagement
with the data. They were not told what kind of errors these were or what constituted an
error.

Participants were given 30 minutes to explore the data with the tool and asked to think
aloud about what they were investigating. Participants were asked to write down any in-
sights and findings in their notebooks and voice them aloud. During their analysis, they
were free to look up external documentation and use any other python libraries they thought
might be helpful. Our research team was present if participants had questions about the task
overall, however, did not answer questions about the data. We automatically logged interac-
tions with the tools during the study. Afterward, we conducted semi-structured interviews
with each participant and asked them about how they went about the task and how the tool
supported their analysis. We examined the findings that participants wrote down in the
notebook or voiced aloud from study recordings to quantify how many of the insights on
our rubric they had found. In Subsection 4.6.5, Subsection 4.6.6, and Subsection 4.6.7 we
discuss findings based on these logs and interview data.

4.6.5 Live profiles do not lead to more insights but make verification easier

In both conditions, participants found a similar number of insights: on average, 6.9 with
STATICPROFILER and 7.4 with AUTOPROFILER out of the 16 we measured (P=0.71).
Therefore, we did not observe more insights found with AUTOPROFILER (Q1). Partic-
ipants heavily used both versions of the tool as demonstrated by the similar number of
unique dataframes and columns explored in Figure 4.5. We suspected the live updates in
AUTOPROFILER to encourage more tool use which would lead to more insights found but
participants found both versions to be helpful during their analysis task, reinforcing the
value of automatic visualization. Furthermore, live updates may not have made as much of
a difference in a controlled lab setup versus a less well-defined analysis outside of the lab
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No. Type Category Origin Description Found From tool

1 Missing Error Inherent Small missingness in 3 columns 56% 100%
2 Missing Error Inherent Large missingness in 3 columns 56% 100%
3 Inconsistent Error Added City has lower & upper case values 69% 91%
4 Inconsistent Error Added Negative prices 69% 100%
5 Incorrect Error Inherent Date could be parsed to DateTime 63% 90%
6 Incorrect Error Added County has default values of "---" 81% 85%
7 Incorrect Error Added Sqft has strings; convert to int 69% 82%
8 Outliers Error Inherent Outliers in sqft 6% 100%
9 Outliers Error Inherent Outliers in price 44% 100%
10 Schema Error Added Duplicate datapoints 38% 100%
11 Distribution Insight Inherent Room in apt is almost all 0 56% 100%
12 Scope Insight Inherent Dataset is only apartments in California 31% 100%
13 Correlation Insight Inherent Check any correlations with price 13% 0%

14 Distribution Insight Inherent Data not evenly distributed across years 38% 100%
15 Inconsistent Error Inherent Check year and date cols correspond 19% 67%
16 Inconsistent Error Inherent Price not properly extracted from title 6% 0%

Table 4.1: Description of each of the errors and insights on our “rubric” of participant perfor-
mance. We include the percentage of participants that discovered each error/insight, noting that
some discoveries were found far more often than others. As the same information was present in
both AUTOPROFILER and STATICPROFILER, the discovery rate in each condition is largely com-
parable. The first 13 insights and errors were things we expected participants to discover ahead of
time, and the last 3 were valid extra findings discovered by participants.

setting which we explore in Section 4.7.
Participants used both versions of the tools to verify that their code had the expected

effect on a dataframe. For example, we observed participants finding an error through
the tool, writing code to fix it, and then checking that their code had the expected effect
through the tool. We particularly noticed this pattern with users of AUTOPROFILER. For
example, P3 noticed error #3 that the city column contained some cities that were spelled
with different casings (“Oakland” and “oakland”) with the column detail view. They then
fixed this error by making all the values upper case with their own Pandas code and verified
that the top values were all upper case in AUTOPROFILER. As P3 described:

“It was nice to see when I do the upper [casing] and I can just see, oh that
worked. When I do the drop duplicates, I can just look and see like, oh that
worked. I like that.”

We observed this (1) find a dataset error, (2) fix, and (3) verify in the tool loop for
many of our participants. Live updates help facilitate this verification since the updates
happen automatically, whereas with the static version of the tool, users would often verify
transformations with their own code manually. As P7 (STATICPROFILER) mentioned: “I
only want [STATICPROFILER] when I’m ready for it. Because it does take up some screen
space. Like I don’t want it like suddenly bumping a bunch of things out of the way.” Since
STATICPROFILER puts visualizations inline in the notebook, multiple invocations can lead
to cluttered notebooks.
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Both AUTOPROFILER and STATICPROFILER also helped participants quickly discover
when they had done a transformation incorrectly. For example, P5 used AUTOPROFILER

to export the outliers for the beds column to code. However, when they re-assigned their
dataframe variable, they assigned df to only contain outliers by accident. With AUTO-
PROFILER they quickly noticed that their dataframe now only contained 12 data points
with extreme distributions and were able to fix their error. We observed this pattern of
the tool helping find user errors during four different studies, three of which were using
AUTOPROFILER.

Using static, inline data profiles is not without its advantages. For one, several users
liked the ability to keep a history of past dataframes in their notebook when they called
plot() with STATICPROFILER. Although some participants felt this led to potentially
cluttered notebooks, it can be useful to scroll back to an earlier version of the data. This is
not possible in AUTOPROFILER since the visualizations always show the current dataframe
in memory.

Figure 4.5: Usage and task performance metrics of AUTOPROFILER and STATICPROFILER from
our user study.

4.6.6 Automatic visualizations speed up insight discovery

Participants found the tools to be useful both as a first step in analysis, but also to help them
understand their data after updates and transforms. We logged interactions during the study
and present metrics of interest in Figure 4.5. We measured the unique dataframes explored
as the number of unique dataframes toggled open (AUTOPROFILER) or called with plot
(STATICPROFILER). This metric captures how often a user returns to a dataframe after it
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updates or explores a new dataframe. For example, if a user explores df, updates it, then
explores df again we would count this as two unique interactions. We observed that partici-
pants with AUTOPROFILER interacted with slightly more dataframes (9.9 vs 5.5), however,
this difference was not statistically significant (P=0.21). Over the course of their analy-
sis, participants were on average inspecting data profiles in AUTOPROFILER for almost 10
different slices or updates to dataframes. One of our participants with AUTOPROFILER

actually interacted with 30 unique dataframes during their analysis.
We also measured the number of unique columns (including updates) that participants

interacted with and find that they explore largely the same number of columns in each con-
dition, investigating 25.5 unique columns on average with AUTOPROFILER and 24.1 with
STATICPROFILER. Since the original dataset had 13 columns, this indicates that partici-
pants were not only interacting with the original data but were returning to the profiles as
they updated or filtered their data. This continuous interaction is the main goal of continu-
ous data profiling.

Overwhelmingly, participants found their insights with the assistance of either tool
rather than by manually writing code to get the same information. This means that when a
participant said the insight aloud or wrote it down in their notebook, this information was
discovered through the tool. Across both conditions, an average of 91% of insights found
came from the tool, with a non-significant difference in rates between the two conditions
(P=1.0). This means that on average only 9% of insights were found by users writing
manual pandas code during the study. This supports that the information contained in the
profiles is useful and replicates what participants would have wanted to see anyway without
requiring extra code to be written (Q2). As P14 (STATICPROFILER) said “it does a lot of
the things that I already do, but just in one succinct and easy-to-understand way”. By
presenting this information automatically, the tools saved participants time and prevented
them from having to exit their analysis flow to look up external documentation. As P10
(AUTOPROFILER) described:

“I might have known to look for it, but it would have taken me a lot longer to
remember how to do it in Pandas.”

When data profiling information is more easily accessible it speeds up the entire analy-
sis loop, making it easier to discover more insights in a shorter amount of time while still
being thorough. As P9 (AUTOPROFILER) described:

“I would probably try to do similar things that AutoProfiler suggests [on my
own], but it would take a much longer time. Like the amount I did in 30 min-
utes, if I had to do it without AutoProfiler, would have taken hours. And then
since it takes longer, my motivation would go down and my focus would go
down. So I feel like I would have found far fewer errors than I could with
AutoProfiler.”

We found that not all insights were discovered with the same frequency, with discovery
rates between 6% and 81%. In Table 4.1 we see that some errors like #6 were found by
81% of participants; others like #8 or #10 were found by 6% and 38%, respectively. Error
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#8 was particularly difficult since the sqft column had to be parsed from a string to an
integer (error #7) to get information about the outliers in the profiles. Many participants
did not successfully fix this issue during the study time, explaining the low discovery rate.
However, duplicate primary keys (error #10) was readily discoverable in the interface by
looking at the number of unique values in the post id column yet few participants found
it. We discuss this usage trend in more depth in Section 4.8 about how tools can facilitate
users finding information they would have already wanted to investigate, however if they
do not know to check for an issue then this information is easily skipped over.

4.6.7 Exports facilitate follow-up analysis and learning

We also measured the number of times that participants exported to code during their anal-
ysis. Every participant used code exports at least once, with the total number of exports
ranging from 1 to 16, with a mean of 7.1 exports. In Figure 4.5, we detail the average
number of exports between the two tools. We see similar trends across both conditions,
where participants export more selection exports than template exports. Selection exports
refer to exporting a filter from a chart or summary statistic like exporting the selection for
df[df.city == "San Jose"]. Although these exports are small, they can help make
follow-up analysis easier if a user wants to filter since “that’s probably the most annoying
lines to constantly type is [to] just filter” (P5, using AUTOPROFILER).

Template exports refer to code for authoring a chart or getting outliers. Participants
also found this helpful because it helped facilitate tweaking code for follow-up analysis.
When describing their reason for using chart exports, P14 (STATICPROFILER) mentioned
“It’s really nice to just quickly be able to like to copy that and use it, and then I could just
make some edits to it.” This answers Q3 that exports facilitate faster feedback loops.

Another unexpected benefit of code exports is the ability to actually learn Pandas better
and understand what is going on under the hood of the system when it reports a statistic.
As P12 (AUTOPROFILER) said succinctly: “I’m learning as I’m exploring and it’s saving
me time.” Expanding more, P2 (STATICPROFILER) mentioned:

“For the educational perspective, that’s something I didn’t expect...specifically,
I [exported] the standard deviation and I could see points inside or outside of
3 [std]. When I saw that code I learned that’s the way to do that.”

The ability to teach users how to do common analysis steps is an exciting aspect of systems
that support easily linking code and direct manipulation interactions.

4.6.8 Limitations

Our user study is subject to several limitations. First, subjects were explicitly told to explore
and clean their dataset and were given 30 minutes to engage with a brand-new dataset. This
is a relatively short time span to learn and use a new tool on new data. We also suspect
that the explicit instructions to find errors and write down findings in a report might have
encouraged better continuous data profiling practices than what actually happens in real-
world settings. However, these explicit instructions helped us determine which features
specifically aid in continuous data profiling and what kind of errors users commonly find or
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miss. Another limitation is that participants analyzed a relatively small dataset. The errors
and insights in our dataset were representatives of those found in larger datasets and we
believe our findings translate well to other tabular dataset tasks. Finally, we compared two
versions of our tool with different levels of automation to understand how they supported
continuous data profiling rather than comparing to a baseline with no tool and view this as
an area for future work.

4.7 Evaluation: Longitudinal Case Study

To address some of the limitations of our user study, we also evaluated how AUTOPRO-
FILER helps data scientists in a real world environment by working with domain scientists
at a US National Lab to integrate AUTOPROFILER into their workflows. These scientists
work with large-scale image data collected from beamline X-ray scattering experiments
to understand the properties of physical materials [83]. Two different scientists installed
AUTOPROFILER into their Jupyter Lab environments and used it over a three month period
during their analyses as much as they liked. We were unable to collect log data during
this deployment for privacy reasons. We periodically spoke with the scientists during the
deployment to make sure the tool was working. At the end of the 3-month period, we
conducted in-person observations and interviews with the participants where they showed
us the notebooks and datasets where they were using AUTOPROFILER and we asked about
how they used the system, and which features they felt supported their workflows.

As a Jupyter Lab extension, AUTOPROFILER fits into the existing workflows of these
scientists since they typically did data analysis with Python and had existing libraries for
visualizing and manipulating their data. AUTOPROFILER helped improve two different
workflows they have for data analysis. The first is for monitoring data outputs and quality
while an experiment is running. Their experiments last for multiple hours or even days
while they collect image readings from a sensor and then process these images into tab-
ular datasets with Python image processing pipelines. As the scientists describe, during
these experiments “real-time feedback is important as it shows us whether the experiment
is working”. The participants mentioned how AUTOPROFILER improved this type of mon-
itoring since it works with any Python-based analysis and “allows [them] to easily notice
any anomaly and observe a trend or correlation during experiments.”

The second way the participants used AUTOPROFILER was to analyze their results after
an experiment completed. In this scenario, the scientists “iteratively sub-selected a relevant
set of data, using AutoProfiler as a guide, and then analyzed this subset of data using exist-
ing analysis/plotting tools. Thus, AutoProfiler has shown its value in improving data triage,
data organization, and serendipitous discovery of trends in datasets”. In the remainder of
this section, we discuss two high-level patterns of use that emerged from interviews with
the participants in our long-term deployment.

4.7.1 Finding and following up on trends

When using AUTOPROFILER to analyze their experimental results, our participants ex-
pressed how the tool facilitated finding interesting aspects in their data and then diving
deeper into those subsets. In this way, AUTOPROFILER facilitated a faster find-and-verify
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Figure 4.6: AUTOPROFILER integrated into a domain scientist’s analysis workflow during our case
study. AUTOPROFILER is shown on the bottom screen in the Jupyter notebook.

loop during analysis. The automatic plotting in AUTOPROFILER presented interesting plots
in their dataset that helped them find subsets to export and explore further such as by run-
ning other analysis code to plot the images corresponding to each data point. They were
especially excited about the possibility of incorporating bivariate charts into AUTOPRO-
FILER so they would have to use even less of their own analysis code.

4.7.2 AUTOPROFILER facilitates serendipitous discovery

The scientists used the live version of AUTOPROFILER that updates whenever their data
changes. They mentioned that the combination of all three features (automatic visualiza-
tion, live updates, and code authoring) supported one another to lower the friction of their
data analysis and were not enthusiastic about using versions of the tool without all of these
features (such as in STATICPROFILER). Furthermore, the participants mentioned that us-
ing AUTOPROFILER helped them discover trends or errors they might not have noticed
otherwise:

“One of the things that I very often notice is if the histogram is completely flat.
That means that either all the numbers are exactly the same, or that it’s some
sort of sequential number. Sometimes that’s what I’m expecting, so great. But
sometimes, if it’s not what I’m expecting, then that immediately stands out as
being weird and it draws my attention to it. I would never have noticed if it
were not plotted; I would never have thought to plot it.”

Our participants described how these unexpected, serendipitous, discoveries were primarily

43



facilitated by the auto-updating and automatic visualizations of AUTOPROFILER and made
the system a valuable part of their workflow.

4.8 Discussion

Data science is messy. There are a combinatorially large number of ways to slice a dataset,
trying to find meaningful insights. The goal of continuous data profiling is to augment a
human’s sense-making ability by automating the analysis feedback loop to be as fast as
possible. Previous work has established that automated systems can best facilitate data
understanding by automating the need for manual specification [59]. We found that two
different versions of automatic profiling help speed up this feedback loop in our user study.
Furthermore, we found evidence that the combination of automatic visualization, live up-
dates, and code handoff leads to a smoother, more thorough analysis loop in our long-
term deployment where our participants credited AUTOPROFILER with helping them find
“serendipitous discoveries” in their dataset.

In real-world tasks, encouraging critical engagement is challenging because analysts
must trade off finding insights and errors quickly with a thorough and exhaustive analy-
sis of their data. AUTOPROFILER’s design removes friction by saving time and clicks to
better facilitate continuous data profiling. Since AUTOPROFILER works with any pandas
dataframe, users do not have to write or copy and paste profiling code that might be tightly
coupled to a specific dataset. This makes notebooks cleaner and easier to maintain.

Future tools can leverage the benefits of both code and automated visualization for
data analysis through linked and deeply integrated data profiles. Automatically present-
ing a starting set of profiling information and supporting follow-up analysis by enabling
code exports helps reduce the feedback time during analysis. This approach differs from
other profiling systems that aim to include as much information as possible in the interface
without handing off to code [95, 120].

4.8.1 Guiding users towards unknown insights

Beyond making data analysis faster, automated systems like AUTOPROFILER can help
users discover insights they might have otherwise missed. These serendipitous discoveries
present an interesting opportunity for tools to help users look at their data in new ways.
However, this process cannot be fully automated. Automatically presenting data profiles to
users gives them the opportunity to find insights. Users must still take the time to look at
and interpret if an insight or error is noteworthy. Automated systems can augment human
expertise, but do not replace it. For example, in our user study, many participants missed
important data quality issues like duplicate values, even though this information was readily
available in either tool if one knew to check. The most common types of unexpected errors
discovered through AUTOPROFILER were strange distributions such as a totally flat distri-
bution or weird frequent values. The distribution information is very visually prominent in
AUTOPROFILER, perhaps making it easier to discover in the interface.

Automated assistance in notebooks opens up the design space for further improvements
toward guided analysis. One exciting area for future work is the potential to integrate alerts
into automatic data profiles to draw user attention to important errors. For example, an alert
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could be displayed if a column has a number of null values or outliers greater than some
threshold. Alerts must be customizable and designed to minimize alert fatigue, or else
a user may totally ignore them [144]. With existing inline, manual profilers [120] these
alerts would be re-computed and displayed every time a user updates and re-profiles their
data, quickly causing alert fatigue. Tools like AUTOPROFILER present an opportunity for
persistent alerts between profiles that can better support continuous data science.

4.8.2 Authoring analysis code for users

Our export to code feature was very popular among participants, with many requests for
even more ways to export to code. Part of the benefit of AUTOPROFILER’s approach to
exports is they are predictable: the system exports the same template code every time, with
the dataframe and column names filled in. This is in contrast to generative approaches to
code authoring such as Github Copilot [49] where a model might produce different code
for the same task depending on the prompt. Users must then take time to understand this
new code each time it is exported. The downside to template approaches like ours is that it
is less flexible for arbitrary analysis.

In our user study, we frequently observed participants needing to look up the docu-
mentation for how to write a certain command with the Pandas library, even if they were
experienced users. As tools continue to evolve to automatically write analysis code through
text prompting, we think this will make data iteration even faster. The linked, interactive
outputs from systems like AUTOPROFILER becomes even more valuable to help users un-
derstand their data as the time it takes to write analysis code decreases, perhaps especially
when users are not manually writing all of that code and need to understand its effect on
their data.

4.9 Conclusion

In conclusion, this chapter presents AUTOPROFILER, a system situated within computa-
tional notebooks that uses automatic, live, and linked data profiles to support continuous
data profiling during data analysis. Tools like AUTOPROFILER demonstrate the potential
for automated tools to support common data analysis tasks like dataset overview and ver-
ifying the effect of edits. This helps data practitioners more quickly get feedback on their
data while programming.

With AUTOPROFILER, we develop an interactive data profiling tool that:

1. Integrates directly into the environments where users work with their data—computational
notebooks

2. Facilitates fast feedback with live updates so that data profiles are in sync with the
latest data

3. Enables handoffs between the system and code so that users can interact with their
data through code and view results in the system, but also return from the system
back to code for follow up analysis through code exports
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Chapter 5

SOLAS: Adapting Data Profiles Based on Anal-
ysis History

This chapter is adapted from the following published paper:

[39] Will Epperson, Doris Jung Lin Lee, Leijie Wang, Kunal Agarwal, Aditya G. Parameswaran,
Dominik Moritz, and Adam Perer. “Leveraging Analysis History for Improved In Situ Visual-
ization Recommendation”. Computer Graphics Forum EuroVIS. 2022.

Analysis Code

+
History

Figure 5.1: SOLAS tracks the history of a user’s analysis to provide improved in situ visualization
recommendations. In this example, a user has most recently created a new column called Class,
so SOLAS profiles this variable in the main view of the interface. Since other recently executed
Pandas commands interacted with Worldwide Gross, Viewership, and MPAA Rating, SOLAS ranks
visualizations in this order compared relative to the Class.

5.1 Summary

In this chapter, we extend the tabular data profiling concepts introduced by AUTOPROFILER

by incorporating the user’s analysis history into dataset overview visualizations. Existing
visualization recommendation systems commonly rely on a single snapshot of a dataset to
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suggest visualizations to users. However, actual data work involves a series of related inter-
actions with a dataset over time rather than one-off analytical steps. This chapter presents
SOLAS, a tool that tracks the history of a user’s data interactions through the analysis code
they write, models user interest in each data column, and uses this information to provide
visualization recommendations, all within the user’s native analytical environment. SOLAS

tracks a user’s function calls to the Python Pandas library to track how they are manipu-
lating their data and which data properties they most frequently access. The system then
uses this analysis history to improve data overview visualizations in three primary ways:
task-specific visualizations use the provenance of data to provide improved visual encod-
ings for common analysis functions, aggregated history is used to rank visualizations by
our model of a user’s interest in each column, and column data types are inferred based
on applied operations. We present a usage scenario on how SOLAS can be used for a real
world analysis workflow and the results from an online user survey with 87 participants
that shows that users significantly prefer the task-specific visual encodings made possible
by SOLAS on 3/5 tasks.

5.2 Introduction

During exploratory data analysis, analysts iteratively explore different methods for clean-
ing, aggregating, and filtering to make sense of their data [79]. Throughout this exploration,
recommended data visualizations can help users understand their analysis and determine
next steps by automatically visualizing interesting relationships. However, most existing
visualization recommendation systems provide recommendations on a single data snapshot
that fails to capture the dynamic nature of analysis.

Recognizing this limitation, recent visualization recommendation libraries have started
providing dynamically chosen recommendations in situ during the iterative process of data
analysis [14, 55, 96, 120, 138]. For example, the Lux library generates visualization rec-
ommendations when users display Pandas dataframes in a computational notebook. This in
situ, dynamic approach to visualization recommendation has seen considerable adoption,
and helps analysts identify valuable next steps in analysis [96]. However, existing libraries
use a single snapshot of the dataset and/or the last data analysis or transformation step is-
sued by the user, as opposed to the rich history of the user’s exploration across steps. This
history captures not just implicit user interest, but also provides cues into the underlying
data semantics.

In this chapter, we show how analysis history can improve recommendation. With anal-
ysis history, we can better understand both the provenance of data as users apply iterative
transformations and which parts of the data users are likely interested in visualizing. For
example, if a new column is created, a natural next step may be to visualize the distribution
of this column. If an analyst has also recently explored other columns, we can suggest
visualizations with these sets of columns to facilitate comparison. Over time, we build a
model of a user’s interest in each column of their data. Each time a user interacts with
their data we update this model to reflect their current interests and use this information to
improve visualization recommendations.

By tracking history, we can also preserve data that is no longer in the current dataframe
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for visualization. For instance, when a filter is applied to data, we plot the unfiltered dis-
tribution alongside the filtered distribution to add context. Systems without the provenance
provided by analysis history have no knowledge of how to combine these dataset itera-
tions. Additionally, the operations a user applies to each column provide a hint about the
high-level measurement types of the columns. For example, when a multiplication or di-
vision operation is applied, a column can be inferred as quantitative. As we track analysis
history, we use these operational signals to do better type inference and visualize columns
according to this inferred type.

Using analysis history for recommendation is difficult for several reasons. First, dataframes
must be instrumented so that history is logged with all relevant parameters and column
interactions. This also involves logging parent-child links between dataframes when an
operation returns new data and transferring history to the new dataframe. Second, each
analysis operation must be interpreted to understand how the operation should be visu-
alized and what data type information can be learned. We need to use the semantics of
data returned from certain operations to offer tailored task-specific visualizations. Lastly,
combining analysis history into a model of a user’s interest in each column is non-trivial.
Analysts shift their focus as they learn more about which parts of the data they find inter-
esting. More recent data interactions yield a stronger signal about which parts of the data
should be visualized and older interactions become less relevant over time.

We address the aforementioned challenges by integrating history tracking into a visu-
alization recommendation tool, SOLAS. Our tool demonstrates how the extra information
from analysis history leads to more insightful and better visualization recommendations.
We provide a user evaluation of our task-specific recommendations that demonstrates that
Python users find our provided visualizations useful for understanding the returned data
from analysis functions. SOLAS is open-sourced and available for use1.

In summary, our contributions are as follows:

1. We provide an extensible approach for logging, weighing, and combining data inter-
actions during analysis.

2. We demonstrate how to use the semantics of the data returned from specific analyti-
cal function calls to visualize them with appropriate encodings. These task-specific
visualizations often include data from previous analysis steps.

3. We introduce a method for aggregating over history to model user interest in columns
and to update inferred data types based on data transformations.

5.3 Background and Related Work

5.3.1 Interacting with Analysis History

Provenance is often used to describe the history of how data and analysis evolve over time.
Data provenance is used to understand analysis history, adapt to user preferences, and sug-
gest next steps in a variety of analysis settings [173]. Graphical histories offer an approach
for exploring the analysis history logged from a user’s UI interactions with the visualization
tool Tableau [60]. B2 logs an analyst’s interactions with data as code snippets in a notebook

1https://github.com/cmudig/solas
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so they can more easily recreate an analysis [171]. Analysis history is also useful in experi-
mentation and versioning so that analysts can track multiple versions of an analysis, switch
between versions, and interact with these histories during exploratory programming [79,
80, 81, 164]. SOLAS offers a unique method for tracking analysis history through the code
executed and suggesting visualizations from this history.

Aggregated past analyses can also be used to suggest potential next steps. Data scraped
from Jupyter notebooks on GitHub has been used to suggest possible function parameters
during analysis or to suggest next steps based on a user’s current exploration path [131,
174]; similar approaches have been used to recommend related SQL queries during analy-
sis [3]. Data scraped from public repositories only represents a single snapshot of analysis
and thus does not contain the full history of the user’s exploration; SOLAS captures more
detailed data interactions.

5.3.2 Visualization Recommendation

Visualization recommendation typically has two goals: (1) helping analysts follow best
practices by creating visualizations that are both expressive and effective, and (2) remov-
ing the tedium of crafting visualizations to make the exploration process faster and more
robust [59]. These goals manifest in systems that recommend a combination of design and
data variations [166]. Design variation shows data in a variety of visual encoding to a user
to allow them to select the best way to visualize their data; data variation shows different
combinations and subsets of the data to help users find interesting trends or patterns.

One of the early systems to focus on visualizing design variation was Mackinlay’s APT
system [102]. APT recommended visualizations that satisfied the competing criterion of
expressiveness (conveying the truth) and effectiveness (is the truth readily perceived). Later
work also focused on presenting a variety of design encodings to an analyst that satisfy
constraints on design best practices [111], or based on user-specified interest [103]. Most
similar to our approach is Behavior-Driven Visualization Recommendation (BDVR) which
matches a user’s patterns of analysis to suggest alternative visual encodings [50]. Our ap-
proach is distinct in several ways, namely that we track a user’s analysis history through
their code rather than direct manipulation and thus impose fewer restrictions on user in-
puts. By situating SOLAS in the Jupyter ecosystem, we provide visualizations when the
alternative is no visualization at all, whereas all exploration in BDVR is visual.

Another complementary approach to visualization recommendation focuses on recom-
mending data variation to the user. Foresight allows users to explore by selecting a guide-
post metric of particular interest (such as high correlation) and then view charts with similar
statistics [32]. In Zenvisage, users specify a query by sketching the general chart pattern
they are looking for, such as a sharply increasing linear curve, and are presented with charts
that loosely match this pattern [147].

The Voyager and Voyager 2 recommendation systems are driven by the maxim to “show
data variation not design variation” [167, 168]. In these systems, a user specifies an attribute
of interest, and the system shows visualizations of this attribute with one other attribute
(possibly a wildcard) ranked by perceptual effectiveness scores. Furthermore, the Com-
passQL recommendation engine underlying these systems supports the partial specifica-
tions of visualizations that can fill in reasonable defaults according to best practices [166].
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Similarly, SeeDB allows a user to specify a base data query and the system finds interesting
visualizations by comparing statistics between charts such as the skew or correlation of the
data [158]. Despite their focus on data exploration, data variation systems notably all focus
on a single iteration of a dataset as input. However, during their exploration, analysts are
transforming, adding, and deleting data. By taking into account the provenance of data,
SOLAS uses the history of analysis to provide improved recommendations.

SOLAS is an extension of the popular Lux library that recommends visualizations for
Python Pandas dataframes [96]. Lux allows users to center recommendations around a
particular attribute or subset of the data through a manually specified intent. However,
in initial studies of the Lux system, users seldom used the intent specifications and found
the in-place, immediate recommendations that Lux provides to be most helpful [96]. By
tracking analysis history, SOLAS is able to automatically infer user intent and recommend
appropriate visualizations. History tracking, task-specific visualizations afforded by his-
tory, and operational type inference are all unique to SOLAS. SOLAS groups recommended
visualizations into the same semantic tabs as Lux such as Correlation, Distribution or Oc-
currence but sorts the charts in each of these tabs by the model of user column interest. The
history tracking capabilities of SOLAS are not tied to Lux and can also be applied to other
systems.

5.4 Tracking Analysis History

Our system design brings analysis tracking to users’ native data analysis environments
so they can use their normal data exploration tool stack. SOLAS tracks history for the
popular Python data manipulation library Pandas and presents visualizations directly within
Jupyter notebooks. Pandas is the most popular data manipulation library in Python, with
hundreds of millions of downloads [119]. Likewise, computational notebooks in Jupyter
have become the tool of choice for data science in Python [123]. Due to their widespread
adoption, SOLAS focuses on analysis history tracking and visualization in this ecosystem.
Users can explore their data using Pandas and SOLAS automatically creates visualizations
based on their analysis history.

5.4.1 Logging Python Pandas Function Calls

Most analytic actions in Pandas occur through the DataFrame and Series APIs which are
abstractions over data tables and arrays, respectively. To collect analysis history, we over-
ride the Pandas API at runtime so that operations applied to dataframes or series are cap-
tured. For the user, the API does not change and they can use Pandas functions like normal;
behind the scenes, whenever one of the overridden functions is called, we log the interac-
tion to that dataframe’s history. Although Pandas supports some unique analytic functions
for series or dataframes, the SOLAS user experience is not substantially different depending
on the underlying data object so we focus the majority of our examples on dataframes.

For each operation, we collect four pieces of information: the dataframe this operation
occurred on, the data columns in the operation, the type of operation, and the time (in terms
of execution count) when this operation occurred. In Jupyter, code is organized into cells
that can be executed in arbitrary order. The output of the chunk of code in a cell is shown
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Task Code Example Information Learned

Column Reference df["A"] Increased interest in A column.
Column Assignment df["B"] = df["A"]10 Interest in A and B. Both are quantitative.
Value Counts df.A.value counts() Increased interest in A.
Describe df.describe() Interest in quantitative columns of df.
Groupby, Aggregate df.groupby("C")["B"].mean() Interest in cols; C is nominal and B quant.
Aggregate df.mean() When plotting show error bars.
Filters df[df.A > 30] Interest in A. A is at least ordinal.
Null Checks df.isna() Plot as stacked bar.
Correlation df.corr() Plot as correlation matrix.

Table 5.1: Common analysis tasks that have accompanying task-specific visualizations in SOLAS.
When an operation is performed, it is added to the history of that dataframe.

immediately below the cell. Whenever a cell is executed, the execution count increases
by one and thus we use execution count as a time ordering of analysis commands. When
df["Medal"].value_counts() is run, SOLAS logs that this operation occurred on the
dataframe df, referenced the Medal column, was a value counts operation, and occurred
at a certain execution count during the analysis. We discuss how we use this information
for improved visualizations in Section 5.5.

SOLAS maintains its own history of operations for each dataframe or series object. This
was an intentional design decision since users may have dozens of dataframes in memory
so we want to be sure to show relevant visualizations for each dataframe. This also resolves
ambiguities when two dataframes have the exact same column names but different data so
interest in the Age column of one dataframe does not influence interest in the Age column
of another.

Beyond a single operation, analysis history represents a sequence of operations over
time. Many analysis steps return new dataframes or change an existing dataframe. Fig-
ure 5.2 demonstrates how a filtering operation on df_movies at time step 11 returns a
new dataframe that is assigned to the variable filt_df. By tracking history, we know
that df_movies is the parent and filt_df the child. When an operation returns a new
dataframe, this new object inherits the history from its parent. However, subsequent op-
erations only affect either the parent or child, but not both. For example, the column as-
signment at execution count 12 in Figure 5.2 only affects the interest model of df_movies
and the mean calculation in time step 14 only affects filt_df. By tracking this data
provenance, we maintain references to data that would have been lost otherwise and can
create unique visualizations that use the data before and after an operation is applied such
as showing the background distribution for filtered data.

SOLAS Tracks Common Pandas Analysis API Calls

To ensure coverage of commonly used Pandas functions, we scanned the API documen-
tation of Pandas and identified common analysis functions that might be applied to a
dataframe or series. We additionally observed over 10 hours of online Pandas tutorials
and analysis demonstration videos that showed how people use the API for real-world
analysis tasks. Overall, our tracked analysis functions cover the most common analysis
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functions from previous investigations of Pandas API usage [124]. These operations range
from simple variable selections to complex filters, aggregations, and statistical functions.
Operations for which we provide a task-specific visualization are presented in Table 5.1.
We also track history for additional functions like df.head() or df.tail(). However,
since these functions interact with all columns in a dataframe, they do not provide us with
additional information to model user interest in specific columns. We do not track history
for table joins or operations that span multiple data tables since we focus our recommen-
dations on visualizing one dataframe (and its history) at a time. Furthermore, joins result
in a single dataframe object that can be visualized.

5.4.2 Modeling Column Interest

Analysts’ interests shift over time as they explore their dataset. In order to reflect this in
our recommendations, we consider more recent data interactions to be more important than
older interactions. At the start of an analysis, no history exists and thus all columns are
equally interesting. Over time we update our model of an analyst’s interest and provide
recommendations tailored to their recent analysis.

To accomplish this time-weighting in SOLAS, we use Jupyter’s execution count as a
time index for each history item. Every time a user executes a code cell, this execution
count increases by one. Each operation begins with an initial weight w0, that corresponds
to how much we value this operation in our history. Most operations begin with w0 =
1, with the exception of two operations. Column references begin with w0 = 0.5 and
column assignments with w0 = 2. We found that column references are extremely common
and happen in almost every single piece of analysis code. Therefore, we begin column
references with a weight of w0 = 0.5 to reflect this weaker signal. Likewise, column
assignments are rarer and thus should be strongly valued. This is similar to the logic of
TF-IDF from natural language processing, where more common words across documents
are less interesting [73]. Since column references happen more frequently, they provide us
with less signal about a user’s interest.

To calculate our model of user interest in each column at a time-step t, we begin
by iterating through the items in the dataframe’s history in reverse order and decay the
weights according to an exponential decay function. This decay function allows us to
prioritize data interactions that occurred most recently in the overall execution count as
well as within a single cell. The weight of a history item that occurred at time t is
wt = w0 × 0.85n−t × 0.95line num, where w0 is the initial weight of the item, line num is
the within cell index (starting at 0), and n is the total number of history items. This involves
two hyperparameters: decay between execution counts (i.e. in different cells), and decay
between operations that occur within the same cell. We use a value of 0.85 to decay history
between execution counts and 0.95 to decay history items that occurred during the same
execution count. After we decay the history, we exclude operations with a decayed weight
less than a threshold of 0.25. This allows us to exclude older history items that are likely
no longer relevant. Users can customize all three of these hyper-parameters (decay rates
and exclusion threshold) through the SOLAS API. These parameters primarily affect how
long interactions are considered for recommendation, and we found in practice that the
model’s column ranking is relatively stable across parameter values. To produce a ranking
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Figure 5.2: The interest rankings demonstrate the model of column interest at different steps during
the analysis in Section 5.6. When Viewership is referenced in time step 8, it has more interest
than other columns from earlier in the analysis. After the filter in [11], filt_df inherits the his-
tory from df_movies and further commands affect the models of each dataframe independently.

of column interest, we sum across the weighed history and sort so that columns with the
most cumulative weight are given the highest ranking. This prioritizes columns that are
referenced frequently and more recently.

SOLAS uses the model of column interest to visualize columns in the most recent op-
eration relative to columns of interest in the enhance tab and to sort other recommendation
tabs. The column interest ranking shown at each time step in Figure 5.2 demonstrates how
this history aggregation works in practice. In time step 14 (the green box), the column
interest model for filt_df ranks MPAA_Rating most highly since it was referenced most
recently, and the interest in Worldwide_Gross has been decayed.

5.5 Visualization Recommendations from Analysis History

Once we have modeled column interest from analysis history, we can use it to improve
visualization recommendations in three ways. First, we use the provenance afforded by
history to provide task-specific visualizations to visualize data from specific function calls
with appropriate encodings. Next, we use the model of column interest to enhance the
most recent operation’s visualization and sort other recommendation tabs. Lastly, we use
the operations that an analyst applies to each column to improve type inference and provide
better type-appropriate visualizations.

5.5.1 Improved Task Visualization

The most recent operation a user has applied to their data gives us the strongest signal
about their current interest. As described in Subsection 5.4.2, the last operation gets the
most weight in our model of a user’s column interest. We also provide task-specific visual-
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izations catered to the most recent operation in the SOLAS UI. To encode a single operation,
we provide visualizations that, in our opinion, best communicate the task that the operation
performs. Each of the functions in Table 5.1 is encoded in a specific way that best presents
the task this function aims to accomplish. We chose the task-specific encodings to reflect
both common practice (e.g. heatmaps for correlation matrices) as well as encodings that
follow best practices such as those synthesized in prior work [111].

Our task-specific visualizations fall into two broad categories: those that detect pre-
aggregated data and those that use historical data from earlier in the analysis history. Many
analysis functions such as value counts return pre-aggregated data. Typical recommen-
dation systems are unaware of this provenance and treat these aggregates as raw values,
producing nonsensical visualizations. SOLAS is aware of the function call that produced
data to visualize to avoid this pitfall. Other tasks, like filters, benefit from data that is no
longer in the current dataframe to give additional context. Some of our encodings, such as
for describe handle pre-aggregated data and use historical data for outliers.

Detecting Pre-aggregated Data

Several analytic functions aggregate the raw data in various ways and return the results. We
use the semantics of the returned data to visualize each function in a task-appropriate way.

Value Counts: The value counts function returns the count of each unique value in a
column of a dataframe. Existing visualization recommendation systems will encode these
counts as raw values; SOLAS knows that they represent category counts and encodes the
data as a bar chart.

Correlation: Calls to df.corr() return a correlation matrix. SOLAS plots this data as
a heatmap over correlations to make it easier to spot columns with low or high correlation.
Figure 5.3 shows a Correlation matrix visualization for the Movies dataset discussed in
Section 5.6.

Null counts: There are several ways to check how many nulls are in a column in Pan-
das including isna, isnull, and notnull. Each of these functions returns a Boolean
dataframe representing if a value is null. We visualize this data as stacked bar charts show-
ing how many nulls are in each column to help analysts identify columns with many (or
few) null values.

Encoding Historical Data

In addition to understanding the semantics of data returned from analysis functions, analy-
sis history allows us to visualize historical data that is no longer in the dataframe. Data from
earlier in the analysis lineage proves useful in a variety of analysis tasks from providing
overviews with outliers to adding context to filters.

Describe: The describe function returns statistical summaries of each quantitative col-
umn in a dataframe such as the count, mean, std, and quartiles. Since the goal of this
function is to get an overview of the column, we visualize the data in a boxplot to com-
municate the distribution of the columns. The power of SOLAS becomes evident here as
the data returned by df.describe() does not contain enough information to visualize a
boxplot. Instead, SOLAS retrieves the parent dataframe (df) in order to plot outliers in the
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Figure 5.3: By using analysis history, SOLAS better understands the semantics of data. It knows
the values returned from df.corr() represent a correlation matrix and visualizes this data as a
heatmap to highlight columns with high or low correlation.

data needed for the boxplot. Furthermore, the data returned from df.describe(), like
many analysis operations, is pre-aggregated. Visualizing these aggregates as raw values by
treating them as quantitative values results in nonsensical visualizations. Yet without the
history captured by SOLAS, a recommendation system would be unaware this data is pre-
aggregated. Figure 5.5A shows our boxplot visualization of this function. Without analysis
history, visualizing outliers is not possible.

Filters: During data analysis, filtering is extremely common. In Pandas, users can ac-
complish the same filtering task with the following three commands: df[df.Age > 30],
df.loc[df.Age > 30], df.query("Age > 30"). To better understand a filter, it can
be useful to plot how the returned data compares to the original distributions. Filtering on
one column can sometimes have unexpected effects on the distribution of other columns.
In SOLAS, we support this comparison between the filtered and original distribution by vi-
sualizing these two distributions as overlapping bars or histograms for each column. Users
can toggle the background distribution on or off to support focus on only the filtered data or
to compare to the background. Additionally, we sort the returned charts to prioritize distri-
butions that shift the most after the filter is applied by calculating the earth mover’s distance
between the two distributions in the same approach as SeeDB [158]. Sorting in this way
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allows users to compare which distributions shift the most because of the filter. Figure 5.5D
shows an example filter visualization for filtering the worldwide gross column. The first
visualization shows how many points remain in the data after the filter is performed. The
following visualizations show that the distribution of Worldwide_Gross shifted the most
after filtering, followed by US_Gross, Production_Budget, and so on.

Groupbys and aggregations with mean: When users perform any type of aggregation
on the mean, we augment the visualization by plotting error bars with the standard deviation
to provide additional context to the mean values. This reflects statistical best practices
around plotting mean values. To compute the error bars, SOLAS once again references the
parent of the aggregated data to calculate the standard deviation. Example function calls
that elicit this visualization include both data aggregations that calculate the mean for any
quantitative column in the data (e.g. df.mean()) as well as groupbys with mean (e.g.
df.groupby("A").agg({"B":"mean"})).

For any groupby aggregation, we also update the x-axis name to include the aggregation
so that users know how their data was aggregated in the plot. Figure 5.5C shows an example
groupby where Rotten_Tomatoes_Rating is aggregated by its mean. SOLAS shows
error bars for these groups, allowing users to understand the standard deviation in addition
to the mean, without having to write any extra code.

5.5.2 Using Column Interest Model

SOLAS uses the model of column interest described in Subsection 5.4.2 in two ways. First,
high interest columns are compared in the enhance tab. As the most recent operation has
the highest interest, this tab shows visualizations comparing columns in the most recent
operation to other recently interacted columns. Second, the recommendations in the other
tabs are sorted according to this interest model. Particularly as datasets grow wide, there
are many possible visualizations that can be shown to visualize univariate and bivariate dis-
tributions. Therefore ranking visualizations becomes increasingly important to show users
visualizations that correspond to columns they care about. We group our recommended
visualizations into the same task groups as Lux, including tabs for Correlation showing
scatterplots and Distribution showing histograms. However, we sort the visualizations in
each of these tabs by the column ordering provided by our model. SOLAS thereby shows
visualizations most relevant to a user’s recent interactions at the front, reducing the time
needed to scroll to find relevant charts.

Figure 5.1 demonstrates this sorting after several analysis steps. Since our analyst has
most recently interacted with the Class variable it is shown on the left-hand side of SO-
LAS’s UI. Next, SOLAS shows Class relative to Worldwide_Gross, MPAA_Rating, and
Running_Time_min since these columns were also interacted with during the analysis in
decreasing order of inferred interest. Other tabs such as Correlation, Distribution, Occur-
rence, and Temporal use this same ordering to present the most relevant visualizations to
the user first.
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Operation Aggregation Inferred Type

=, ̸= ... Nominal
<,≤, >,≥ min, max, median Ordinal
+,− mean, sum Interval
∗, /, //,%, ∗∗ prod, std, var, sem, skew Ratio

Table 5.2: When column operations or aggregations are applied to the data, SOLAS updates the
data type if it learns new information from the interaction.

5.5.3 Inferring Data Types from Interactions Through Analysis Commands

The last way that we use history to improve recommendation is by using the operations that
an analyst applies to each column to do better measurement type inference. Measurement
types refer to the meaning of a column such as nominal, ordinal, interval, and ratio variables
as opposed to data types such as int or float.

Type inference in SOLAS happens in two stages. First, we infer types with traditional
methods based on dataset statistics and data types. Next, we update these default mea-
surement type inferences based on the operations a user applies to each column. With
better types for each column, we are able to visualize data with more appropriate encod-
ings. We infer types for levels of measurement based on the operations supported by each
level. Nominal variables only support equality, ordinal variables also support comparison,
interval variables support addition and subtraction, and ratio variables also support multi-
plication and division [152]. Each “higher” level supports all operations below. When we
see an operation applied to a column, we know that the column must be at least of that
level. Table 5.2 shows Python operators and their corresponding level of measurement that
we use for type inference. For simplicity in SOLAS, we visualize variables as either nom-
inal or quantitative and therefore group nominal and ordinal inferences into nominal and
interval and ratio into quantitative.

Figure 5.4 demonstrates how we can update the type of a variable from interactions and
how this affects recommended visualizations. In this example, the Viewership column
is inferred as nominal by default since it has a low cardinality. However, once a multi-
plication operation is applied to the column, we learn this column must be quantitative in
order to support multiplication. This type update changes the univariate visualization of
Viewership from a bar chart to a binned histogram, and changes how Viewership is vi-
sualized in bivariate distributions as well. These type updates only go up the levels. There-
fore if a column is inferred to be quantitative by default and we execute df.col == 45,
we will not change the type to nominal since quantitative columns also support equality.

In addition to mathematical operators, we also learn type information from the aggre-
gation functions presented in Table 5.2. The levels in each of these aggregation functions
correspond to the operations required to carry out that functionality. For instance, median
only requires greater than or less than comparisons so lets us learn ordinal information,
whereas calculating the product (with prod) of a column requires multiplication and thus
tells us this column should be Ratio typed.

There is one exception to the rule of only going up the levels of measurement. When
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a user groups by a column, we infer this column to be nominal. We use this as a heuristic
since it does not make sense to group by a quantitative column (without binning) and so any
column that is used to group should be nominal. With any of these type inferences, there is
the possibility that we will update a column’s type erroneously. Users are able to override
inferred types manually though the SOLAS API by using df.set_data_type().

Figure 5.4: Viewership initially represents the count of viewers in 10 millions. Since it has low
cardinality, it is visualized as a nominal variable. However, when we re-scale the column by mul-
tiplying by 10 million, SOLAS infers that Viewership must be a quantitative column that supports
multiplication and visualizes accordingly.

5.5.4 Interacting with History

In SOLAS, all of the history tracking and recommendation happens under the hood. How-
ever, we support interactions for users to browse the history of operations that occurred on
a dataframe (or its ancestors) to better understand the past operations and visualize them.
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When a user clicks on a previous step in the analysis, we show them the visualizations for
this specific task. Additionally, users can delete history items if they do not want them to
influence their recommendations.

5.6 Usage Scenario

To demonstrate the use of SOLAS, we describe an example analysis scenario where an
analyst uses the system to explore a movies dataset to create a model for predicting movie
revenue. The dataset contains columns such as the movie title, revenue, rating, viewership,
etc. This example demonstrates many features enabled by collecting and reasoning about
analysis history.

To begin her analysis, our analyst loads the CSV file with Pandas into her Jupyter
notebook and calls df. Her dataset contains 3,201 rows and 17 columns. By default,
SOLAS shows four different groups of visualizations: correlation, distribution, occurrence,
and temporal. Once she begins exploring, SOLAS will be able to use her history to suggest
even more visualizations.

5.6.1 Supporting Analysis with Task-Specific Visualizations

To get an overview of her data, she calls df_movies.describe(). There are initially
eight quantitative columns in the dataset, and the describe function returns summary
statistics for each column. To visualize this data, SOLAS plots each of these eight columns
as a boxplot (Figure 5.5A). Looking at the plots, she notices many high-range outliers on
the US_DVD_Sales, Worldwide_Gross, and US_Gross columns. By using data from
the parent dataframe, df, to plot these outliers, SOLAS is able to provide a visualization
that best caters to the overview task of describe.

Next, our analyst checks if she needs to clean any columns. She calls checks the nulls
and looks at the bar charts to see the results. Most columns have no or very few nulls;
however, the US_DVD_Sales column is almost all null. She decides to drop this column.
Additionally, she filters to only keep non-null rows for MPAA_Rating, as she is potentially
interested in including this column in her model. MPAA_Rating corresponds to movie
ratings like PG-13 or R. SOLAS visualizes the returned data as a filter so our analyst can
inspect how the dropna operation affects the distribution of other columns (Figure 5.5B).

Next, our analyst looks to explore how metrics in the dataset differ across MPAA_Rating
to see if this column will be helpful for modeling later. First, she calls values counts
on the MPAA Rating column to understand the distribution. SOLAS knows the data re-
turned is pre-aggregated and plots the results in a bar chart. Most movies in this dataset
are rated R, followed by PG-13. She then groups by MPAA_Rating and aggregates sev-
eral other columns. Since her earlier exploration revealed the skewed distribution of the
US_Gross and Worldwide_Gross columns, she aggregates them by their median across
MPAA_Rating. She also calculates the mean of the Rotten Tomatoes Rating and Running
Time minutes. When visualizing these results, SOLAS automatically includes error bars
for the mean calculations to give more context (Figure 5.5C). Our analyst notices that the
Rotten Tomatoes Rating column has similar standard deviations across ratings, except for
the Open category, which has a much smaller standard deviation on the visualization.

59



5.6.2 Improving Visualizations with Type Inference Updates

To continue transforming her dataset, the analyst inspects the Viewership column (Fig-
ure 5.4 Top). Since this column has low cardinality, SOLAS initially infers the type to be
nominal. However, the analyst knows that this column represents the viewership in units
of 10 million, so she multiplies the column by 10 million to get the raw viewership count.
After this operation, SOLAS has evidence that Viewership is a quantitative column and
updates the type and visualizations accordingly (Figure 5.4 Bottom). This operation-based
type update would not be possible without tracking and reasoning about analysis history.

5.6.3 Surfacing Visualizations with Column Interest Model

Our analyst turns her analysis towards the Worldwide_Gross column, since she will
be using this column for predictions. Her earlier analysis suggested this column is right
skewed, and has a large number of high-value outliers as shown in the boxplot for describe.
Still, she wants to recheck the distribution again to confirm. She simply references this
column in a cell by typing df_movies.Worldwide_Gross and SOLAS plots both the
distribution of this column as well as Worldwide_Gross relative to other columns in the
dataset. SOLAS sorts these visualizations so that columns she has recently interacted with
appear first such Viewership or MPAA_Rating (as reflected by the ranking at execution
count [10] in Figure 5.2).

After looking at the histogram, she creates a predictive model for high-grossing movies.
She applies a filter to Worldwide_Gross, and SOLAS shows how this filtered data com-
pares to the unfiltered set (Figure 5.5D). She can toggle the background distribution on
and off to inspect more closely the returned data with or without this additional context.
Once again, this background context would be impossible without SOLAS’s history of her
analysis. She iterates on her filter and decides on a value of $100M for her threshold
since the SOLAS filter plots revealed that about a quarter of movies earn more than this
much. Our analyst then creates a new binary variable called Class for whether or not a
movie makes more than $100M. She will be using this variable as the prediction target for
a binary classifier. She visualizes her data once again by displaying the dataframe with a
call to df_movies (Figure 5.1). Since she has most recently created the Class variable,
this action is highlighted in SOLAS and a bar chart for Class is shown. Furthermore, by
looking at the enhance tab, she can see Class relative to other variables in the dataset.
These recommendations are sorted by variables she has interacted with recently so Class

vs Worldwide_Gross is shown first followed by Class vs Viewership and so on.
Finally, our analyst calls df.corr() to see how the other columns in her data are cor-

related with her new Class column (Figure 5.3). She notices several features have a strong
correlation with the Class such as US_Gross. In contrast, others like IMDB_Rating have
a weaker correlation, so they likely provide less predictive value. With this, our analyst is
happy with her data exploration and is ready to begin modeling. By using SOLAS, she was
able to spend less time thinking about how to visualize her data and more time focusing on
the insights of her analysis.
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Figure 5.5: SOLAS tracks history throughout an analysis to provide improved visualizations. We
show four snapshots from an example analysis that demonstrate the recommendations from SOLAS.
(A) When an analyst calls describe, we visualize the returned data as a boxplot by using infor-
mation that is no longer present in the returned data to plot outliers. (B) After cleaning their data
by dropping columns and nulls, SOLAS shows how the distribution of other columns change. (C)
For groupbys and aggregations, we use history information to add better x-axis labels and include
error bars when plotting the mean. (D) When filtering, SOLAS shows the background distribution
of each column from the parent data relative to the filtered data. Users can toggle the background
distribution on and off.
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5.7 Evaluation

To evaluate how well SOLAS suggests visualizations that users find helpful on real-world
tasks, we ran a survey to assess if users preferred the task-specific encodings provided
by SOLAS versus the default encodings shown in Lux. We use Lux as an example of
visualizations that will be presented by a state-of-the-art recommendation tool that does not
use history. Our evaluation demonstrates the value of incorporating analysis history into
visualization recommendation as SOLAS suggests preferred encodings for several tasks.
We chose to evaluate the task-specific encodings since they were most easily assessed by
crowd workers and do not require an entire analysis context to be useful; we demonstrate
the utility of our model of column interest in Section 5.6.

We recruited 87 participants from the crowd-working site Prolific who attested to hav-
ing some experience working with Python and the Pandas library. For participants to be
eligible, they were required to correctly answer at least one quiz question assessing their
familiarity with the Pandas API.

Participants were introduced to an example analysis task analyzing data about athletes
from the 2016 Summer Olympics. This dataset has 13,688 rows and 14 columns, such as
the athlete’s height, weight, age, country, sport, and whether or not they won a medal. The
survey was split into five sections where participants were shown a function call for the
describe, corr, groupby, isNull, or filter tasks along with a preview of the data
returned from this function. Participants were asked which of two recommendations they
preferred for this data: the SOLAS task-specific encoding, or the default Lux encoding that
did not leverage analysis history. The ordering of the visualization choices was randomized.

Participants’ preferences are summarized in Figure 5.6. We conducted t-tests to assess
if the fraction of responses was significantly different than 0.5 (which would indicate no
preference). For describe, corr, and groupby participants significantly preferred the
SOLAS encodings. For describe, participants preferred how SOLAS’s boxplot matched
the descriptive statistics: “[Solas] actually shows a distribution to the descriptive statistics,
so we can see if there’s any skew/outliers/etc.” (P30). Interestingly, for describe Lux
re-aggregates the data and presents a misleading histogram that assumes the data is a nor-
mal quantitative column. However, 21% of participants still preferred the histogram since
it “Just seems easier to analyze and see” (P26). This underscores the importance of com-
municating data with appropriate encodings since users will interpret the chart even if it is
visualizing irrelevant data.

Participants preferred the correlation matrix shown by SOLAS because they found the
heat map “helps to see trends where they might not be obvious” (P64) and found it “Cleaner
to have it in a single visualization, and the correlation matrix makes it easier to compare
values ” (P67). The correlation matrix has higher information density; most users prefer
having the data communicated in a single visualization with higher information density.
However, others still preferred bar charts showing the correlations relative to a single vari-
able since they found it “easier and faster to read” (P27). The groupby visualizations were
very similar except SOLAS’s included error bars for mean charts and more descriptive axis
labels. As indicated in survey responses, many participants preferred these subtle differ-
ences.

For the isNull task, users were ambivalent about which encoding they preferred with
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Figure 5.6: Survey participants (N=87) significantly preferred SOLAS’s encodings for describe,
corr, and groupby. For isNull, they found either encoding equally acceptable. For filter,
participants significantly preferred the Lux encoding and are given the option to toggle the back-
ground distribution on and off in SOLAS. P values marked with (**) are below 0.05 and considered
significant.

a non-significant difference in preferences. The SOLAS visualizations are subtly different
than those provided by Lux. SOLAS visualizes the data as a stacked bar for each column
showing the amount of null values; Lux shows a bar chart of the sum of True and False
values. Participants preferring SOLAS remarked “if the context is apparent, why use true
or false? In [Solas] we know the emphasis is on the number of missing records” (P93).
However, others preferred Lux’s encoding since it is more faithful to the data rather than
the task at hand, “I think it’s more clear in [Lux] approximately how many True/False nulls
there are, while [Solas] is a relative comparison” (P30).

Finally, for the filter task, users were shown data from a filter that selected only ath-
letes who participated in the Athletics event at the Olympics. Participants significantly
preferred the Lux filter encoding to the SOLAS encoding that showed the results relative to
the background distribution. In the actual SOLAS system, users can toggle the background
distribution on and off so users can view both of these encodings. Users that preferred SO-
LAS claimed “This chart shows me how much the Athletics population is part of the overall
population and their metrics as compared to others. Really cool chart” (P60). However,
most participants found the extra context unhelpful: “I think it’s better to focus on the ex-
tracted data rather than have it being compared to the entirety of the dataset” (P13). Future
investigations might explore when this additional context is most helpful. By supporting
toggling the background distribution on and off, we believe the design of SOLAS addresses
many of the concerns from participants.

5.8 Limitations

This system and study is subject to several limitations. As a system, SOLAS currently only
tracks history for Pandas dataframes and works in Jupyter (or similar) notebooks. However,
we believe the ideas of using analysis history tracking to augment visualization recommen-
dation are applicable beyond Python and Pandas programming. Our evaluation focuses on
how crowd workers successfully understand SOLAS’s task-specific visualizations. How-
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ever, further studies might explore how systems augmented with history tracking like SO-
LAS help analysts explore their data on more in-depth analysis tasks.

5.9 Discussion

SOLAS demonstrates how history-based visualization recommendations can improve the
experience of users as they iterate during exploratory data analysis. We believe that inte-
grating history tracking into other visualization tools can provide similar benefits. Even in
tools where users are not writing code, they still take actions similar to those accomplished
through Pandas for SOLAS such as looking at an overview of their dataset, applying filters,
and aggregating. Future work can use the same task-specific visualizations from SOLAS

from history tracking and recommend in other settings such as no-code tools or other pro-
gramming languages such as SQL or R.

5.9.1 Preventing Erroneous Findings

In building and evaluating SOLAS, we noticed trends around how users interact with their
data and analysis histories. During our evaluation, some users still preferred the poor en-
coding of the aggregated data even though the chart communicated false findings such as
re-aggregating pre-aggregated data into a histogram. By ensuring proper task-specific vi-
sualizations, SOLAS can help make sure that data analysts engage with their data truthfully
and are not led astray by poor encoding. This finding echoes similar research from the
XAI community about how users trust interpretability visualizations of a machine learning
model even if the results are false [77].

5.9.2 Next Step Recommendation

Once we have detailed information about an analyst’s steps during their data exploration,
we can use this information beyond visualization recommendation. By aggregating across
multiple analyses, we can begin to recommend potential next steps during recommenda-
tion with accompanying visualizations. Existing work in this area typically mines Jupyter
notebooks found on Github to understand how users go about their analysis [131, 174],
however, notebooks found on Github are often incomplete, or do not run [140]. Further-
more, they do not represent the full breadth of analysis since only one snapshot is uploaded
that may not contain previous analysis paths that have been deleted from the notebook. By
using SOLAS, we can track detailed information about the full breadth of a user’s analysis
and use this data to provide improved next step recommendations.

5.9.3 Capturing Interest Across Multiple Analyses

In addition to next step recommendations, we can use aggregated analysis histories to better
understand how analysts typically interact with a particular data source. Many teams inter-
act with (versions of) a remotely stored data source. Each of these analyses can be tracked
through SOLAS to build a model of how users interact with that data across analyses. When
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a user begins a new analysis, we can help them bootstrap their exploration by demonstrat-
ing how people typically explore or interact with that data source. We could even develop
analysis templates based on common practices for single data sources or within a domain.

5.10 Conclusion

In this chapter, we introduced SOLAS, a system that enhances tabular data profiling by
incorporating users’ analysis histories into visualization recommendations. By tracking
interactions with the Python Pandas library, SOLAS models user interests across different
data attributes and provides task-specific data overviews and prioritized visualizations tai-
lored to ongoing analytical tasks. Recognizing that data analysis involves iterative queries,
SOLAS adapts visual overviews to fit the user’s workflow, ensuring that visualizations are
relevant and context-aware. This adaptive approach facilitates more effective data profiling
compared to traditional methods that rely solely on static data types.

SOLAS extends the ideas of Interactive Data Profiling to develop a tool that:

1. Like AUTOPROFILER, is situated directly in the computational notebook environ-
ment

2. However, rather than only considering the current data in an analysis, SOLAS tracks
the full history of the analysis. We show how to implement history tracking by ex-
tending a data manipulation library, then demonstrate applications of history tracking
for task-specific visualizations, ranking overview visualizations, and inferring data
types
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Chapter 6

TEXTURE: Structured Exploration of Text Datasets

This chapter is adapted from the following paper:

[37] Will Epperson, Arpit Mathur, Dominik Moritz, and Adam Perer.“Texture: Structured
Exploration of Text Datasets”. In Submission to IEEE VIS. 2025.

Figure 6.1: TEXTURE helps users explore text datasets through structured descriptive attributes. Its
configurable data schema supports attributes at any level of granularity in the text, such as document-
level attributes like the conference and embedding or word-level counts shown in this example
analysis of an abstract corpus. The system organizes list attributes like words with multiple values
per document into new tables and then joins tables to enable scalable filtering. TEXTURE helps
users explore their data through attribute overview visualizations, interactive filtering, embedding
overview and search, and contextualizing filters in the document text.
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6.1 Summary

Exploratory analysis of a text corpus is essential for assessing data quality and developing
meaningful hypotheses. Text analysis relies on understanding documents through struc-
tured attributes spanning various granularities of the documents such as words, phrases,
sentences, topics, or clusters. However, current text visualization tools typically adopt a
fixed representation tailored to specific tasks or domains, requiring users to switch tools as
their analytical goals change, slowing down analysis and introducing unnecessary friction.
This presents an opportunity to design general-purpose, lightweight interactive tools that
can be used across text datasets to increase the feedback cycle during analysis in the spirit
of Interactive Data Profiling systems. However, the Interactive Data Profiling tools devel-
oped up to this point in this thesis, AUTOPROFILER and SOLAS, only target tabular data
and thus cannot support the full range of attributes needed to understand unstructured text
datasets.

To address these limitations, we present TEXTURE, a general-purpose interactive text
profiling and exploration tool. TEXTURE introduces a configurable data schema for rep-
resenting text documents enriched with descriptive attributes. These attributes can appear
at arbitrary levels of granularity in the text and possibly have multiple values, including
document-level attributes, multi-valued attributes (e.g., topics), fine-grained span-level at-
tributes (e.g., words), and vector embeddings. The system then combines existing inter-
active methods for text exploration into a single interface that provides attribute overview
visualizations (inspired by those presented in AUTOPROFILER), supports cross-filtering
attribute charts to explore subsets, uses embeddings for a dataset overview and similar in-
stance search, and contextualizes filters in the actual documents. We evaluated TEXTURE

through a two-part user study with 10 participants from varied domains who each analyzed
their own dataset in a baseline session and then with TEXTURE. TEXTURE was able to rep-
resent all of the previously derived dataset attributes, enabled participants to more quickly
iterate during their exploratory analysis, and discover new insights about their data. Our
findings contribute to the design of scalable, interactive, and flexible exploration systems
that improve users’ ability to make sense of text data.

6.2 Introduction

Understanding collections of text documents is a fundamental task across many disci-
plines. In the social sciences, researchers programmatically analyze trends from social
media posts, news articles, and government reports [40, 47, 163], while in NLP researchers
use text datasets to train and evaluate new AI models [74, 136]. With the rise of large
language models (LLMs), text data is becoming increasingly available and important in
many high-stakes applications [133, 141]. Whether for research, model development, or
decision-making, users have the need to quickly understand the text in their datasets, and
evaluate the results of their analyses on the text [133, 157].

Since manually reading all documents in a corpus is infeasible, analysts must transform
text data into shorter, more interpretable representations [35]. Many techniques exist to
derive these shorter representations, ranging from extracting words and phrases, to tagging
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documents with topics or classes [99]. While some descriptive attributes like words or
topics are generally useful across datasets, many meaningful representations are task and
dataset specific. Over the course of an analysis, users often experiment with different
representations of their data as their questions and goals evolve.

However, many prior text visualization tools focus on particular domains or tasks where
the descriptive attributes are predetermined. For example, domain-specific systems for so-
cial media content analysis [4, 16], academic literature review [7, 114], or NLP model
evaluation [74, 148] all extract predetermined representations. Likewise, task-specific sys-
tems for word or topic understanding operate on a pre-determined level of granularity [41,
133]. These specialized tools enable deep analysis of specific questions, however lack the
flexibility needed to adapt to varied datasets or shifting analytical goals during exploratory
analysis [71]. Nevertheless, many exploratory interactions—such as filtering data subsets,
searching for textual patterns, or exploring document embeddings—are common across
tasks and domains. This fragmented landscape motivates our central research question:
How can we build a general-purpose, interactive text exploration tool?

To address this question, we first introduce a configurable data schema for describing
text data and associated descriptive attributes and then present an interactive interface for
exploring a text dataset through its configured attributes. Our schema describes attributes
along two primary dimensions: their relationship to the document (i.e., Does the attribute
correspond to the entire document or only particular spans?) and the cardinality of the
attribute (i.e., Does the attribute have a single value per document or multiple values?).
Accordingly, our schema categorizes attributes into five distinct types: text documents,
single-value attributes, list attributes, span list attributes, and vector embeddings. These
types cover common text representations from different levels of granularity in the text
like topics (a single-value attribute that describes a document), authors (a list attribute with
multiple values per document), or frequent words and n-grams (span list attributes that
correspond to parts of the text). Additionally, the proposed data schema prescribes how to
split multi-valued list attributes into new relational tables to enable interactive filtering and
exploration at scale.

We then designed TEXTURE, an interactive text exploration tool based on this config-
urable data schema. TEXTURE combines interactions from previous text analysis systems
into a single general-purpose tool. TEXTURE is designed around three primary interac-
tions: the ability to provide an overview of a text dataset through structured attribute vi-
sualizations, filter attribute visualizations for exploration, and link visualizations back to
the raw documents to contextualize results. TEXTURE automatically generates interactive
overview visualizations for each attribute in a dataset that support cross-filtering to explore
insights across attributes. Attribute visualizations link to a view of the raw documents,
helping users contextualize summaries and filters in the actual document texts. Finally,
TEXTURE incorporates embedding-based operations such as similarity search and dimen-
sionality reduction overviews to enable fuzzy search and a dataset summary. TEXTURE

integrates seamlessly with Python-based data workflows, allowing analysts to program-
matically define and manipulate descriptive attributes before exploring them interactively.
While prior text visualization systems contain subsets of these features, TEXTURE’s nov-
elty is the combination of features with a configurable data schema that enables exploration
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of many different types of text datasets. TEXTURE is open-sourced and available for use 1.
We evaluate TEXTURE through a two part user study with 10 participants. Each partic-

ipant brought their own dataset they had previously analyzed to ensure higher validity of
our study. In the first session, they walked us through a baseline analysis of their data us-
ing their current workflow. Participants used many different kinds of structured attributes
to understand their text. However, they only inspected small samples of the text in their
dataset and were slowed down by the need to manually define charts through code and
their inability to link them back to the text.

In the next session, each participant analyzed their data using TEXTURE. Across all
10 distinct datasets, our results show that TEXTURE helped users effectively explore their
data and uncover new insights. Participants quickly explored different hypotheses and it-
eratively developed meaningful analysis questions with TEXTURE. Our system and study
inform the design of configurable, general-purpose tools that better support users in explor-
ing text datasets across diverse domains. In summary, this chapter contributes:

1. A configurable data schema for describing text attributes from arbitrary levels of
document granularity and cardinality.

2. TEXTURE, an interactive text exploration tool that helps users explore their data
through overview visualizations, filtering, and contextualizing descriptive attributes.

3. Results from a user study that show how TEXTURE is expressive enough to analyze
datasets from 10 different tasks/domains and helps each user effectively explore their
data.

6.3 Related Work

Our paper builds on related work on interactive systems for exploratory data analysis and
text visualization.

6.3.1 The Need for Exploratory Text Analytics

Text data inherently lacks the structure necessary for straightforward visual analysis and
must be processed into meaningful, structured attributes for exploration [133]. Recent
studies underscore the necessity of understanding both individual documents and their de-
scriptive attributes within both local (individual document) and global (full corpus) con-
texts [57]. Even basic document metadata, such as the most frequent words, n-grams, or
domains, can yield significant insights into a corpus and its quality [35]. This form of cor-
pus profiling is essential both for analytical purposes as well as AI model training, where
data quality is often undervalued and prior analyses have found that popular NLP bench-
mark datasets still contain poor quality or mislabeled data [141, 155].

Profiling dataset metadata attributes is a core aspect of EDA workflows where analysts
summarize their data with visualizations to generate initial hypotheses for further analy-
sis [156, 165]. Prior interactive visualization systems for tabular data facilitate EDA by
automatically constructing visual representations of the data and enabling interaction to

1https://github.com/cmudig/Texture
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quickly filter and find meaningful data subsets [76, 167]. Automatic visualization com-
bined with interaction enables a fast feedback loop between asking questions about data
and interpreting the results [36]. While these approaches craft effective visual summaries
of attributes, they lack the ability to contextualize attribute summaries in the actual docu-
ments needed for EDA over text.

6.3.2 Exploring Text Through Structured Attributes Across Levels of Granularity

Understanding a text corpus requires navigating information across multiple levels of gran-
ularity. We review prior approaches for understanding documents across three common
levels—words, documents, and the entire corpus—and their influence on the design of
TEXTURE.

Word Frequency and Highlighting

Words offer a natural starting point for summarizing text documents into a more con-
cise representation. Techniques such as word clouds and parallel tag clouds display fre-
quently occurring words or sequences across a dataset, potentially faceted by structured
attributes [23, 42, 160]. Since the significance of individual words often depends on their
surrounding context, systems frequently use highlighting to link words back to the sur-
rounding context of the original document [25, 34, 112, 117, 153]. Word-level tags like
entities or part-of-speech are also common attributes for analysis. For example, in Jigsaw
users investigate the relationship between entities across documents in a dataset [151], and
Automatic Histograms presents a technique for clustering entities into meaningful seman-
tic groups using LLMs [133]. Beyond individual words, other research summarizes text
documents through short phrases that match a particular query or linguistic pattern [132,
169]. TEXTURE builds on prior word analysis techniques by abstracting these into a span
list attribute where values correspond to any arbitrary segment of the text and individual
occurrences are highlighted.

Document-Level Attributes

Beyond words, other research considers how to navigate a corpus through attributes as-
signed to each document, most commonly topics. Topic modeling techniques represent
each document as one or more topics, each summarized by characteristic words. Latent
Dirichlet Allocation (LDA) is a foundational method using this approach [15]. Interactive
systems help users explore a corpus through topics by showing the most frequent top-
ics, filtering to documents that match a particular topic, and understand how topics evolve
over time [2, 41, 98]. Domain-specific systems like PaperLens linking topic visualiza-
tions directly to a predefined set of structured attributes [94]. With word-based topic tech-
niques, users often struggle to interpret abstract topics represented by lists of potentially
ambiguous words. Recent methods like LLooM improve interpretability by framing topics
through clear inclusion criteria generated by LLMs, such as direct questions (e.g., “Does
this text discuss sports?”) [92]. TEXTURE generalizes techniques for understanding topics
to any document-level attribute by showing frequent values and helping users explore how
document-level attributes correspond to common words or phrases.
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Corpus Overview Methods and Embedddings

At the highest abstraction level, corpus visualization techniques enable exploratory analysis
across entire document collections. Many of these systems incorporate structured metadata
alongside raw text. Leam provides an interface for applying basic text data transforma-
tions (e.g., text length extraction) then visualizing the results [51]. TextTile defines three
fundamental analysis operations—filter, split, and summarize—allowing users to compare
keyword summaries and attribute visualizations across facets of their dataset [43]. Systems
like LLMComparator and Vitality help contextualize dataset attributes by linking document
views and structured attribute visualizations for particular types of text data like LLM out-
puts or paper abstracts [74, 114]. Our work extends these prior corpus-level approaches by
considering a broader set of attribute types, then enables similar interactions for users to
filter and explore subsets.

In addition to structured attribute summaries, document embeddings are commonly
used to understand a corpus. Representing documents with high dimensional embedding
vectors has become a common technique to capture both the syntax and semantics of the
document in a single representation [33, 121, 134]. These embeddings can then be used
for many useful analysis tasks, such as projecting the embeddings down to two dimen-
sions to enable an overview visualization using techniques like UMAP [106], or finding
nearby instances in the embedding space. Prior interactive systems help users explore
documents through embeddings. For example, DocuCompass helps users link subsets of
the embedding space to inline structured attribute overviews [62]. Angler, an interactive
visualization tool for prioritizing machine translation errors, uses UMAP projections to
provide an overview of the data while overlaying the scatterplot with additional informa-
tion, such as usage logs [136]. Similarly, WizMap tightly integrates a projection view
with automatically-generated multi-resolution summaries to help users navigate through
the large embedding space of documents [162]. TEXTURE adopts similar techniques to
these prior approaches by including embeddings as a fundamental data type, used for a
projection overview and finding similar instances. Like prior work, TEXTURE helps users
make sense of embeddings through the structured attributes in the corpus.

6.4 TEXTURE: Interactive Exploratory Text Analysis

TEXTURE builds on prior work for understanding text at different levels of granularity such
as words, document-level attributes, and structured corpus metadata in two primary ways.
First, TEXTURE presents a configurable data schema for representing different kinds of
structured attributes. Unlike prior systems that use a fixed set of attributes or only con-
sider attribute types relevant for a particular analysis task, TEXTURE’s attribute schema is
highly configurable to analyze different types of descriptive attributes across datasets. Sec-
ond, TEXTURE enables exploratory analysis through interactions designed around these
descriptive attributes. These interactions build on methods from prior work to enable users
to explore their data through attribute overview visualizations, filter and compare filters on
attributes, use document embeddings, and relate attributes back to the document text. We
first describe the data schema underlying TEXTURE, then our system.
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6.4.1 Configurable Attribute Schema

Attribute Type Description Examples

Text The text documents Paper abstracts, news articles,
LLM prompts

Single-Value Descriptive attribute that only has one value per
document and is numeric, categorical, or temporal

Publication date, document senti-
ment, topic

List Descriptive attribute with multiple values per docu-
ment

List of authors, keywords, or top-
ics

Span List Descriptive attribute with multiple values per doc-
ument where each value maps directly to a span of
the text

Words, tokens, phrases, part of
speech tags

Embedding High dimensional embedding + a 2D projection SBERT embeddings [134] with
UMAP projection [106]

Table 6.1: The semantic data schema used in TEXTURE describes different kinds of attributes and
their relationship to text documents.

TEXTURE formalizes attribute definitions with a configurable data schema. This schema
supports common representations of text at different levels of granularity—including words,
phrases, n-grams, topics, or document tags—along with arbitrary user-defined attributes.
Expressing attributes in the TEXTURE data schema makes the system highly configurable
for exploring different datasets.

The TEXTURE data schema describes attributes according to their cardinality and how
they correspond to the text. The five types in this schema are presented in Table 6.1. The
first type is Text data which describes the documents in a dataset. Text data can be docu-
ments of any length from social media posts to books. A single instance might have mul-
tiple text attributes. For example, paper titles and abstracts, Spanish to English translation
pairs, or LLM prompts and responses.

The other four types in the schema categorize descriptive attributes. Single-value at-
tributes have a single value per document and are numerical, categorical, or temporal.
These describe document-level attributes such as a single topic tag, publication date, or
sentiment score. This is distinct from multi-valued attributes that are lists. Many common
descriptive attributes are lists. For example, each document can be divided into a list of
words or tokens. Likewise, a single document may have a list of topics or authors. Any
attribute with multiple values is a List attribute. If each attribute item corresponds di-
rectly to a span of the text it is a Span List attribute. Words, tokens, or phrases are all
examples of span list attributes since they correspond to a specific span segment of the doc-
ument. Word-level tags such as part of speech tags or entity tags can also be represented as
span list attributes. Span list attributes enable TEXTURE to capture the hierarchical nature
of text. Documents can be broken down into arbitrary levels of granularity and then anno-
tated with other possible data. All that is necessary is to maintain which index the segment
comes from.

The last type of our data schema are Embedding representations of the text. Repre-
senting embeddings as an atomic type in TEXTURE allows users to choose the model and
projection method they prefer, and then analyze the results in the system. Currently, TEX-
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TURE only supports a single embedding per instance but could be extended in the future to
support multiple.

TEXTURE does not automatically derive any descriptive attributes from the text; in-
stead, it aims to decouple attribute derivation from representation and exploration. Mean-
ingful attributes are often dataset and task-specific and comprise a huge space of possible
attributes. TEXTURE is un-opinionated about how attributes are derived, allowing users to
write whatever code or use whichever models best fit their task. Once they have attributes,
they can describe them with the TEXTURE data schema and then explore their results in the
system.

Representing Attributes in Relational Tables

Our semantic schema prescribes how data should be formatted in physical tables to en-
able exploration in TEXTURE. A key goal of this representation is to support the different
data types from the schema in Table 6.1, while also enabling scalable interactions through
relational query languages like SQL. While modern DataFrame libraries like Python Pan-
das [119] permit arrays or tuples in columns, most relational databases require that tables
are in first normal form and each attribute has only a single value [22]. Normalizing at-
tributes into different tables makes it easier to visualize attributes and perform interactive
filtering at scale with SQL [61].

Therefore TEXTURE splits list attributes into new data tables that are linked back to
the documents. Figure 6.2 shows what this representation looks like for an example input
dataset with different attribute types. In this example, we have five attributes: one text, two
span lists, one list, and one single value. To achieve normalized tables, each of these list
attributes is split into a new table while text and any single valued attributes stay in the same
table. In this example, each document and topic tag remain in the main table. However the
word, part of speech tags (POS), and authors are all lists which are parsed into new tables.

These tables enable representing hierarchy in the data. Each row in the main table has
a unique id while the list attributes maintain a foreign key relationship to the ids. Fur-
thermore, for span list attributes, each table maintains the spans of the original document
that the entry corresponds to. These span indices are used for highlighting the text in the
interactive system. Regular list attributes maintain the array index.

6.4.2 Overview: Automatic Attribute Visualizations

Providing a dataset and schema to TEXTURE enables immediate exploration in the UI.
Figure 6.1 shows TEXTURE with the VisPubs dataset that was also used by one of the
participants in our user study to understand visualization abstracts and is used throughout
our examples [93].

The first component of this UI is the automatic visualization of each attribute into an
interactive overview visualization. These visualizations enable quick overviews of each
attribute and support interactive filtering to enable users to explore documents in differ-
ent subsets of the data. Once formatted into separate tables, each attribute becomes tabular
data. We therefore designed the attribute overview visualizations similar to previous tabular
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Figure 6.2: Following the TEXTURE data schema requires placing list attributes into new tables
that map back to the documents.

data overview tools and text visualization systems that show structured attribute visualiza-
tions [36, 74, 114].

TEXTURE automatically visualizes attributes according to their data type: text, quanti-
tative, categorical, or temporal. Example attribute visualizations are shown in Figure 6.3.
Text columns are displayed in the main document view whereas categorical attributes are
visualized. Users can change the data schema to configure how attributes are displayed.
We produce a summary visualization for each attribute according to its data type:

• Quantitative attributes are visualized as binned histograms.
• Categorical attributes are visualized as sorted bar charts of the counts of the 10 most

frequent values (more on-demand)
• Temporal attributes show line charts of the count over time.

While each of the attributes might come from different tables, TEXTURE shows the
visualizations as a flat list to facilitate comparison between attributes while filtering. This
allows users to make corpus-level observations from list attributes. For example, observing
the most frequent words across the entire corpus or the most frequent author from lists of
authors.

In addition to individual attribute visualizations, TEXTURE provides a dataset overview
plot through a scatterplot of 2D embedding projections. This sort of dataset overview has
become a common data overview technique for unstructured data like text in both research
and commercial systems [62, 115, 162]. The projection view can also be colored by any of
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the single value categorical attributes in the dataset to help users plot clusters in the dataset.
For example, the embedding overview in Figure 6.4 is colored by the conference attribute.

6.4.3 Filter: Exploration Through Linked Visualizations

After attribute visualizations provide an initial overview, TEXTURE enables users to explore
their data by filtering to different subsets. Users can filter their data in several ways in the
interface. First, they can apply selections to visualizations to filter to a particular value or
range of values. As shown in Figure 6.3, users can apply selections to categorical summary
charts like the word chart by selecting one or more bars, in this case the words “data”
and “analysis”. For quantitative or temporal charts, users can filter to a certain range with
a brush.

Attribute visualizations are cross-linked, meaning that filters applied to one visualiza-
tion filter the data in all the other visualizations, including the projection overview chart.
This enables insights beyond single attribute summaries by exploring interactions between
attributes. For example, after filtering to certain values of word in Figure 6.3, a user can
understand how these words are distributed across the conference and year . Or a
filter brushed across different years in the year chart shows how the top words or con-
ferences change across the years. Filters can be applied to multiple charts at once, enabling
questions about increasingly specific subsets of the data.

Users can also apply filters to the dataset overview chart to understand frequent at-
tribute values for different regions of the projected embedding space. Prior embedding
visualization systems have directly labeled charts with frequent words or metadata values
in different regions of the embedding space [62, 162]. TEXTURE does not label the embed-
ding view directly, however enables a similar insight by cross-linking the embedding view
to attribute visualization charts. This allows users to interpret the embedding space through
any of the attributes in their data, rather than just words.

Beyond filters on charts, TEXTURE also supports search and embedding-based similar-
ity search. With the search bar, a user can search for a specific phrases in any of the text
(or other) attributes and once again cross-filter the data. Similarity search is supported in
two ways, shown in Figure 6.4. The first is open-ended similarity search where after a user
enters a query, TEXTURE calls a user-specified model to compute the embedding for the
query, and calculates the cosine distance to each instance’s embedding. The second form is
similar instance search where a user clicks the show similar button on an instance, then the
system computes the cosine distance from this instance to all other in the corpus. The result
from either of these interactions is a new attribute that shows the similarity search result.
Like any other quantitative attribute, users can brush to different regions of similarity or
sort their dataset by this value to find the most, or least, similar instances.

Since the values for List and Span List attributes in TEXTURE are stored in dif-
ferent tables, TEXTURE joins tables when relevant attributes are involved in a cross-filter
selection. This feature enables insights across attributes from different levels of a document
hierarchy such as the aforementioned example about filters over a span list attribute word
with a document level attribute year .
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Figure 6.3: All attributes are automatically vi-
sualized according to their data type (quantita-
tive, categorical, or date) regardless of if they
are lists or single-valued. Attribute visualiza-
tions support interactive cross-filtering and can
color the projection overview.

Figure 6.4: Document embeddings enable a
projection overview and similarity search.

6.4.4 Contextualize: Linking Attributes to Documents

While attribute visualizations and filters help users make sense of the structured repre-
sentations of their text, they also need to be able to contextualize attributes in the actual
documents. By design, a document table view occupies most of the screen in TEXTURE.
This allows users to quickly inspect individual instances and their attributes. The display
table is scrollable with an entry for each instance that shows the text data and attributes.
The document view also allows sorting by each attribute. Each instance shows the first
five lines of text by default and can be toggled to show the entire document and other text
attributes.

When filters are applied through attribute charts, the table view is filtered to the subset
of documents that match the current filter. Combined with attribute cross filtering, this
enables users to quickly understand the results of filters both in terms of other attributes
and individual documents. For example, Figure 6.5 shows how a user might apply filters
to different attributes like year or words to inspect the subset of documents with the word
“data” or “analysis” between the years 2015 and 2025.
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Similar to prior word visualization systems [2, 34], TEXTURE highlights spans in the
text when filters are applied to span-list attributes. The span indices maintained in the TEX-
TURE data tables (discussed in Table 6.4.1) ensure accurate highlights and disambiguate
between substring matches. For example, if a user filters to word == "won", the span of
this word is important to properly highlight only word matches. This way “we won the
wonderful match” is highlighted and not “we won the wonderful match”.

Figure 6.5: TEXTURE helps users contextualize attribute filters in the actual documents by showing
documents that match current filters and highlighting the spans of text for filtered span list attributes.

6.4.5 Implementation & Integration into Python Ecosystem

The TEXTURE interface runs in the browser and is built with a Svelte frontend and a Python
FastAPI backend. DuckDB SQL queries are generated by the frontend with queries coor-
dinated by Mosaic [61]. DuckDB queries run in the backend. TEXTURE also uses a vector
database, LanceDB, to store embeddings and calculate similarity distances between em-
bedding vectors [30].

This Python-based implementation allows TEXTURE to integrate into the Python data
science ecosystem. Python and computational notebook tools like Jupyter have become the
most popular tools for programming with data [150]. Users can format their text data in
Python, derive structured attributes to represent their data, then launch the TEXTURE UI
either from a Python script or computational notebook.

6.5 User Study

To evaluate how well TEXTURE helps users performing different tasks understand their text
data, we ran a user study. We had two primary research questions for this study:

Q1. Expressivity: How well can users working across different tasks represent their text
datasets and descriptive attributes in the TEXTURE data schema?

Q2. Effectiveness: Does TEXTURE improve users’ ability to understand their text, explore
subsets, and find similar documents compared to their current workflows?
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6.5.1 Procedure & Methods

To answer these questions, we designed a user study where users explored their own data
in TEXTURE. Our study involved two separate one hour sessions: a baseline session and
an experiment session.

The baseline sessions were structured as a semi-structured think-aloud interview and
live-coding session, where each participant walked us through an analysis on their own
text dataset and explained their analysis goals. Participants first completed a background
questionnaire on their text analysis experience and listed out their initial analysis questions
about the data. They then walked us through their analysis, showing us the kinds of visual-
izations and analysis steps they took to understand their dataset. Afterwards, we conducted
a semi-structured interview to probe about their experience.

In the next part of our procedure, each of these 10 participants also explored their data
in TEXTURE in a separate session. Participants analyzed the same dataset with TEXTURE

as their initial exploration. This session consisted of a semi-structured exploration, where
participants were asked to think aloud while exploring their data analysis goals in TEX-
TURE. Each participant sent their data to the research team before the session where we
formatted the data into tables that fit the TEXTURE data schema. We included the same
attributes that participants explored in their initial sessions, derived words from the text
attributes with the spans if words were discussed in the baseline interview, and added doc-
ument embeddings for the text using the OpenAI text-embedding-3-small model [118] if
participants did not already provide them. Each session lasted one hour, including a short
demo of the features of TEXTURE on a different dataset, 30 minutes for the participants to
use the system, and an exit survey and interview. In the survey, participants compared their
experience using TEXTURE to their baseline workflow. They then provided open-ended
responses elaborating on their ratings during a post-task interview.

Participants were compensated $40 for the study, and the study protocol was approved
by our institution’s IRB. Both sessions were conducted over video call where audio and
screen was recorded. Interview transcripts and recordings of each participants’ analysis
actions were analyzed using thematic analysis to identify common patterns.

6.5.2 Participant Details

To be eligible for the study, participants had to have experience working with text data and
programming in Python, and be able to bring a text dataset they had previously used in
their work or research. Participants were recruited through connections at our institution
and advertisements on social media.

Table 6.2 details our study participants, their backgrounds, and high level analysis tasks.
Participants had between 4 and 13 years of experience programming with Python (mean of
7.8 years), with self-reported expertise ranging from intermediate to expert. Eight out of
ten of our participants worked with text data daily or weekly, with the other two working
with text data on a monthly basis. Almost all of our participants brought datasets they had
worked with in the past week, with only one participant bringing a dataset they had not
worked with in over a year for confidentiality reasons.

Our participants primarily came from research backgrounds, analyzing research ques-
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ID Role Data and Task Attributes Size Med. # Words

P1 VIS Researcher Paper abstract corpus
for literature review

2 text, 10 descriptive 5700 164

P2 NLP Researcher LLM prompts and
responses with con-
straints

2 text, 3 descriptive 1250 201

P3 NLP Researcher AI agent responses 2 text, 1 descriptive 100 207
P4 NLP Researcher LLM reasoning

traces on benchmark
3 text, 4 descriptive 2600 1402

P5 HCI Researcher Paper abstract corpus
for literature review

3 text, 4 descriptive 3500 215

P6 VIS Engineer Song lyric corpus
analysis

3 text, 8 descriptive 900 991

P7 Humanities Researcher Historical book cor-
pus analysis

1 text, 17 descriptive 600 4218

P8 AI Engineer LLM chatbot user
queries and re-
sponses

3 text, 5 descriptive 16000 431

P9 AI Engineer Reddit social media
post analysis

1 text, 10 descriptive *15000 18

P10 NLP Researcher LLM fine-tuning
dataset creation

3 text, 8 descriptive *5000 1024

Table 6.2: Participants in our study analyzed text data from a wide variety of domains and formats.
We summarize the attributes in each dataset along with the size and median number of words in
each document. *Indicates sample from a larger dataset.

tions about text datasets or text-based AI models. Some of their analysis goals were ex-
plicitly exploratory such as understanding themes in a corpus of song lyrics (P6) or getting
a better sense of the literature in a field (P1, P5). Other participants were seeking to better
understand text datasets as part of a larger model building or evaluation task (e.g., P2, P3,
P4, P10).

Participants analyzed datasets varying significantly in terms of content, structure, and
scale. For instance, P7 analyzed the richest dataset, which included extensive descriptive
attributes accumulated over multiple prior projects. Conversely, P3’s dataset had minimal
metadata, specifically a single categorical attribute identifying agent names for a multi-
agent analysis. The datasets varied considerably in size, ranging from as few as 100 doc-
uments to as many as 16,000. Two of our participants (P9 and P10) analyzed samples of
larger training corpora.

6.6 Baseline Text Exploration Tasks and Challenges

For their baseline analysis, all participants were asked to show us how they explore their
data through code and so spent most of the session stepping through their code-based EDA
workflow. Participants also used tools like the huggingface built in data viewer [69] or
spreadsheets to get an overview of their data. Two participants also used custom-built tools
for exploration. P1 built a custom UI to inspect their data; P2 used the Zeno platform to
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inspect and filter their data [18]. We describe some of the common analysis patterns and
pain points from these baseline analysis sessions.

6.6.1 Inspecting Small Sample of Documents

A common task across domains involved inspecting a sample of individual data instances
to generate hypotheses for further validation through exploration. 8 of the 10 participants
examined a few examples of text, often the first few rows of the dataset, to identify initial
patterns within the data:

“I think this is probably like the most common thing that I’ve done with almost
every data set I’ve ever processed, which is you look at the first 30 rows and
just read through these ones and you see a few things.” - P8

However, with larger datasets, it becomes difficult to make sure these sample documents
are a meaningful subset of the entire dataset. Since hypotheses are generated by examining
only a few instances, analysts might overlook important details in their documents.

6.6.2 Exploration Through Structured Attributes

Although participants were analyzing the text in their data, each relied on different kinds
of structured attributes to facilitate understanding their text. As shown in Table 6.2, every
participant used at least 1 structured descriptive attribute in their data, with up to 17. The
counts in this table represent the number of attributes that were in the data when passed to
TEXTURE, so includes both attributes in the original dataset as well as attributes derived
over the course of the baseline session we observed. For example, the abstract corpora
analyzed by P1 and P5 each came with list attributes like the paper’s authors, publication
year, and conference. The song lyric corpus analyzed by P6 included attributes like the
song’s artist, year, and popularity. P7 described how their dataset and attributes were the
combination of many prior projects where they had worked with the same collection of
books.

Participants also derived new attributes to facilitate exploration. Four participants de-
rived the frequent words or n-grams in their dataset. Three participants used the TextBlob
package to quickly compute sentiment scores for their text [101]. Six participants men-
tioned having previously used, or the desire to use, LLMs as a way to easily derive at-
tributes for things that are hard to define in code. For example, P10’s dataset included three
text attributes for LLM fine-tuning: a prompt, and two different model responses. They
had previously used an LLM to extract the user-specified constraints on the output in each
prompt and thus also had a list attribute for the constraints in each prompt.

Deriving useful attributes is an iterative process, with new attributes derived as new
questions arise. However, with each new attribute participants described how it can become
hard to actually contextualize attribute summaries in the documents. As P6 said when asked
about what is currently the hardest part of their analysis:

“I think with text, it’s converting words to numbers a lot. You’re clustering,
you’re binning, you’re counting, you’re aggregating, but you can lose the con-
text very quickly. So I would have to add a lot more code to just take one topic
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and then [look at] the lyrics for that topic. But if I could just select a topic
and then say, ‘Show me five songs that identify strongest with that topic’...then
I could read it if I wanted to” – P6

6.6.3 Filtering Primarily Through Keyword Search

Filtering is a fundamental analytical task in data analysis, and a similar pattern emerged
during the baseline exploration. Participants applied filtering operations to both derived
attributes (e.g., using word counts to exclude instances with short text) and metadata at-
tributes (e.g., removing publications with low citation counts).

Keyword search was a common and easy form of filtering the text used to validate
previously generated hypotheses. Participants filtered individual instances based on the
presence of specific keywords. However, keyword search was not always sufficient to fully
address the hypotheses, and participants expressed a need for other search approaches when
exact matches are hard to find:

“I guess I can search for ‘predefined category’, but it’s fuzzy and kind of hard
to use regular expressions here. I just need to understand how often people
do this type of sentence or a variant of this sentence trying to constrain the
classification results.” – P2

6.6.4 Barriers to Using Embeddings

The use of document embeddings for text similarity or overviews was not a common anal-
ysis task. Only one participant (P7) had previously computed embeddings for the dataset
they brought. Participants expressed interest in incorporating word embeddings into their
workflows but cited the effort required use these embeddings for analysis as a barrier to
adoption. For example, P4 described:

“Embeddings are great, but they’re just hard to use...I think, honestly, [we
have] TF-IDF and these simple things and word counts for a reason. So I just
like quick and dirty.”

6.7 TEXTURE Usage Results

In this section, we discuss themes about participant’s usage of TEXTURE to explore their
same dataset and how it compared to their baseline workflow.

6.7.1 TEXTURE Is Expressive Enough to Support All Participant Attributes

All of the diverse descriptive attributes from participants’ baseline analysis could be rep-
resented in the TEXTURE schema and analyzed with TEXTURE. Most attributes captured
straightforward, document-level information and were modeled as single-value attributes.
However, eight out of ten participants also used list-like attributes with their datasets. Most
of these were span list attributes for words from the different text attributes, but others in-
cluded document-level lists such as authors (for P1 and P5) or lists of information extracted
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from the text (for P2). This ability to handle varied structured attributes underscores the
flexibility and expressivity of TEXTURE.

Exploring text data through the lens of structured attributes often inspired ideas for
other useful attributes to add to the dataset. During the exploration session, six participants
added new attributes to their data and then explored the results by writing code in the
Python notebook. These were all simple attributes like the length of documents or number
of words. However, participants also mentioned how they might add other attributes like
document topics, use LLMs to quickly derive new attributes for exploration, or find other
datasets online to add to their current exploration given more time.

Figure 6.6: Participants used TEXTURE to explore a wide variety of datasets including LLM out-
puts, song lyrics, and Reddit posts.

6.7.2 TEXTURE Makes Prior Analyses Faster and Enables New Types of Analyses

With TEXTURE, participants were able to perform the same analysis actions as in their
baseline exploration, but more quickly and easily. For example, every participant inspected
attribute summary charts and applied multiple filters to attribute charts to explore subsets
of their data. This involved the keyword searches typical in the baseline sessions (also used
by 7/10 participants in TEXTURE), along with filters over multiple attribute charts.

The automatic attribute visualizations in TEXTURE sped up the analysis compared to
creating charts by writing code in Python. As P7 said, “This just gets me there so much
faster”. Overall, participants agreed that TEXTURE made it easier to understand their text
(mean rating 4.4/5) and filter to subsets of their data (mean rating 4.8/5, see Figure 6.7). In
interviews, participants often attributed this improved ability in understanding their text to
the fact that TEXTURE encouraged them to read through more instances and made it easy
to contextualize filters in the actual data:

“[Texture] makes me feel like I have more visibility into my data set...I’m im-
mediately reading actual samples for like half the time, which I’m never doing
in a notebook.” – P9

In addition to making prior workflows faster and easier, TEXTURE also enabled par-
ticipants to explore their data in new ways. In our baseline sessions, only one participant
had analyzed their dataset with embeddings for a projection overview and no participants
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leveraged similarity search. However, after we calculated embeddings for their data and
uploaded them to TEXTURE, participants found them to be a useful tool for understanding
their data.

All 10 of our participants used the embedding projection chart to get an overview of
their dataset and explore different subsets of the embedding space. Even participants like
P4, who mentioned in the baseline session that embeddings are too hard to use to be valu-
able, found immediate value from them in the tool when they noticed that the two main
types of prompts in their data were clearly separated in the embedding plot (shown in Fig-
ure 6.6):

“That’s great! The fact that it’s already there. Literally all of what I did last
meeting you just [see here]. This is exactly what I wanted to show” – P4

Once again, the ability to link filters across parts of the interface helped participants
better understand their data. For example, for P7 their core analysis task was to analyze
historical books to find counterfeit publications in the late 1600s. Using embeddings, their
goal therefore was to find “unexpectedly similar documents”. To do this, they colored
the projection overview chart by different attributes like the political affiliation of a book
and then looked for outliers–i.e., documents with similar embeddings but different political
affiliations. When they found an outlying book, they were able to then use TEXTURE to
read the text of this book and then compare the instance to others with similar attributes to
better understand if it was actually counterfeit.

Whereas no participants used similarity search in their baseline explorations, the major-
ity did while exploring their data in TEXTURE. Similar instance search was more common,
used by seven participants whereas only two performed open ended text similarity searches.
Participants rated their ability to find similar instances as far easier in TEXTURE than their
baseline workflow (4.6/5).

Strongly Disagree Neutral Strongly Agree
1 2 3 4 5

Understand Text Attributes

Filter Subsets

Calculate & Verify New*

Find Similar Instances

Learn New Things

4.4

4.8

3.9

4.6

4.6

Figure 6.7: Participants rated if Texture made it easier to perform certain actions relative to their
baseline. Mean scores shown along with 95% CI. *Calculate and verify new attribute reflects the
seven participants who provided ratings for this aspect.

6.7.3 Exploring with TEXTURE Leads to New Insights

TEXTURE provided flexibility for participants to explore data from multiple perspectives—
transitioning between top-down and bottom-up modes of exploration. Top down explo-
ration involved looking at attribute summaries then contextualizing these attributes in the
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documents; bottom up involved finding an interesting document and then searching for the
insight more broadly among documents with similar metadata or through similarity search.
These different analysis modes helped participants learn new things about their data they
did not uncover in their prior analyses. Overall, participants rated that they learned new
things about their data with TEXTURE as 4.6/5 on average.

For example, P9 and P10 both found major data quality issues they were previously
unaware of and did not discover in their baseline analyses. P9 was working with a dataset
collected from the social media platform Reddit that contained posts over a 4 year period.
They analyzed 15k posts in TEXTURE out of their full 200k corpus. When initially reading
through some of the instances to get a sense of the data, they noticed that one particular
post seemed to re-occur. Later, while inspecting different outlying clusters in the projec-
tion overview they noticed there was a large central cluster and many outlying clusters.
Inspecting these outlying clusters more, they noticed they were all the exact same post that
comprised almost one third of their data (shown in Figure 6.6). They returned to their note-
book, filtered out these duplicate points, then continued to analyze the remaining 10k posts
in TEXTURE. They were previously unaware that this post existed so many times in their
dataset.

Similarly, P10 identified cases of near repetition in their training prompts by inspecting
outlier clusters in the embedding visualization. By inspecting the data instances that cor-
responded to the different clusters, they noticed these were not exact duplicates but near
duplicates where each prompt contained the same starting text and the end was slightly
different. These near duplicates comprised around 30% of their overall dataset. P10 em-
phasized the importance of dataset diversity for their training goals and noted this quality
issue as something to address in future training. When asked about how TEXTURE helped
them discover this new insight, they remarked:

“One huge value here is that AI people hate looking at data. Like I hate looking
at data because it’s just such a pain. But this makes it actually kind of fun to
look at the data and definitely easy. So I’m pretty excited just using this now
because I’m like, wow, I can actually see the data that I’m training models on.”
– P10

Another theme across participant remarks was the speed with which they were able
to explore and pivot between different analysis questions in TEXTURE. For example, P6
was analyzing a corpus of country song lyrics to see if they might contain useful signal
around self-perceptions of rural identity. Their analysis was inherently exploratory, where
they were trying to better understand the data to see if it would even be useful for this task.
In their baseline exploration they had tried different analysis strategies like searching for
keywords, looking at a song’s sentiment, or basic keyword based topic models. They began
their analysis in TEXTURE by inspecting different subsets of these same attributes, which
then inspired them to do a similarity search for the term “hometown” (shown in Figure 6.6).
From this, they found a particular song whose lyrics captured elements of home and country
and then used this song to once again find similar instances. These results contained many
promising matches that they continued to explore for the rest of the analysis. Reflecting on
their analysis with TEXTURE, they commented:
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“I think the tool was really good at suggesting new questions, actually. Like, I
had some, which I kind of talked to you about [in the first session], but it helped
me narrow down the questions.” – P6

6.7.4 Study Limitations

Our study and findings are subject to potential limitations. Our participants were recruited
from a convenience sample and thus might not be representative of the larger population of
text analysis practitioners. In particular, our participants skewed towards computer science
experts working in NLP.

Participants analyzed the same dataset in the first baseline session and the experiment
session, which means additional insights could come simply from additional exposure.
However, since each participant analyzed a familiar dataset—previously explored in their
own analysis or publication even before the baseline—we expect minimal learning effects
from repeated exposure to the data.

6.8 Discussion

6.8.1 The Value of General-Purpose, Configurable Tools

Many text visualization tools target specific analysis questions and methods from a partic-
ular domain or task. Such tools are highly valuable when participants are at the phase of
analysis where they have decided on their research question and method. However, with
TEXTURE we sought to explore a different goal of developing a general exploration tool
across tasks as a way to support open-ended exploratory analysis. With this approach, TEX-
TURE decouples the derivation of attributes from their exploration. This allows users to
try different techniques—deriving common words, n-grams, topics, LLM-calculated top-
ics, or another arbitrary method—and then explore the results in the same tool. This ap-
proach is complementary to domain and task specific systems. Exploratory tools for text
like TEXTURE facilitate fast first impressions of a data, verifying new attributes in a dataset,
and, importantly, quickly determining if an analysis question is worthwhile before moving
on to custom visual and analytical tools for a particular sub-task. Several of the participants
in our study commented on the value of this handoff, and how they would like to continue
exploring a subset of the data or a question that they discovered in TEXTURE.

6.8.2 EDA in the AI Coding Era

In recent years, AI has begun to transform how people write code and interact with data
through code [49, 176]. This surfaced in our study as well, where many participants used
AI coding assistants to help write the code for their EDA or mentioned how they would
like to process their text data further with LLMs.

What role do interactive data exploration systems serve in the era of AI coding? Our
results offer some clues. Interactive systems can enable users to discover interesting ques-
tions about their data, which complements the ability of AI coding assistants to generate
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code to answer a specific question. Much of the challenge and value of exploratory an-
alytics from the start has been to develop enough intuition about the data to know what
questions are worth asking [157]. Despite using AI coding assistants in their baseline ses-
sions, our study participants still reported how TEXTURE enabled them to quickly explore
their data and come up with better analysis questions than they were able to do on their
own.

These approaches—interactive systems and AI assistance—need not be in conflict but
rather can complement one another. Historically, this has been explored through paradigms
like mixed initiative interfaces where a system can both allow user interactions and suggest
actions [68]. Exploratory text analysis tools like TEXTURE can enable these sort of inter-
actions at the workflow level, where an AI coding assistant suggests analysis code and then
interactive tools help users to quickly inspect the results. This combines the flexibility of
writing code with the speed of interactive interfaces for data exploration, an observation
noted in prior interactive data programming tools [82].

6.8.3 Towards Rapid and Flexible Attribute Derivation

A key element of data exploration, particularly for text data, is the availability of mean-
ingful attributes to summarize and filter the data. In our study, many participants had pre-
viously spent considerable time constructing such attributes with off-the-shelf libraries or
custom methods for things like topics or sentiment. Many participants expressed the desire
for easier ways to derive task-specific attributes catered to their current analysis. Partic-
ularly with the power of general-purpose LLMs for processing text, several participants
expressed how it should be straightforward to derive custom attributes by transforming
their data with a LLM.

We envision two different ways where interactive systems can better support such an
LLM-assisted new attribute derivation workflow: (1) interactively deriving and verifying
new attributes, and (2) suggesting interesting questions for derivation. By integrating the
ability to derive new attributes directly into systems like TEXTURE, users could quickly
derive an attribute, verify the results, and then use this attribute for further analysis. Future
research might investigate how to design such interactions to make this feedback loop as
fast as possible, and how analysts use them in practice. The second, and perhaps more
difficult extension, would be to automatically generate potential questions for derivation,
in the spirit of mixed-initiative interactions. Recent systems like Automatic Histograms
have begun to move in this direction by automatically grouping text entities into dataset
overviews using LLMs [133]. TEXTURE’s data model offers a potential starting point for
thinking about a broader set of attributes that LLMs can derive that correspond to the entire
document or portions of the text. Such methods would continue to increase the speed with
which analysts can quickly structure their text data and then use interactive systems to
inspect subsets and find interesting insights in their data.

6.9 Conclusion

In conclusion, we present the design, implementation, and evaluation of TEXTURE—a con-
figurable and general-purpose interactive system for exploratory text analytics. TEXTURE
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is built on top of a configurable data schema for representing different kinds of descriptive
attributes alongside text. We demonstrate the expressivity of this data model to repre-
sent 10 different real-world text datasets and associated descriptive attributes. Participants
in our study using TEXTURE for analysis were able to more easily understand their data
from both top-down and bottom-up analysis paths, using attribute overviews to summarize
their dataset then drilling down to find interesting subsets and instances that inspired future
analysis directions and questions. Our system and study lay the groundwork for developing
expressive and effective interactive systems for exploratory text analytics.

TEXTURE shows how to develop Interactive Data Profiling tools that:

1. Support profiling text datasets by profiling different data representations. This in-
cludes both traditional tabular attributes, along with multi-valued list attributes that
may correspond to spans of the text, and vector embeddings.

2. Enable fast feedback for exploration through interactive cross filtering across at-
tribute charts that link back to views of the raw documents.

3. Support both bottom-up and top-down exploration through embeddings where users
can view a corpus overview, or find an interesting instance and then search for similar
instances.
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Chapter 7

Discussion & Conclusions

7.1 Summary of Research Contributions

1. Chapter 3: Based on an interview study and survey with 149 professional data sci-
entists, we describe five strategies that data scientists use for sharing and reuse of
analysis code: personal analysis reuse, personal utility libraries, team shared analy-
sis code, team shared template notebooks, team shared libraries.

2. Chapter 3: We report our participants’ determinants and obstacles for code reuse,
and discuss how this motivates the need for tools to help users more easily reuse code
for repetitive analysis tasks like EDA while still maintaining the ability to customize
their exploration.

3. Chapter 4: We define continuous data profiling as the ability to immediately see in-
teractive visual summaries of a dataset while programming. We then show how our
system, AUTOPROFILER, enables continuous data profiling by integrating directly
into computational notebooks, summarizing datasets in memory with overview vi-
sualizations that live update as the data updates, and enables handoffs back to code
through exports.

4. Chapter 4: We evaluate AUTOPROFILER in a controlled study with 16 participants
that demonstrates how continuous profiling helps analysts discover insights in their
data and supports their workflow without the need to write extra code. In our study,
91% of user-generated insights come from the tools rather than manual profiling code
written by users.

5. Chapter 4: We also present a longitudinal case study demonstrating how scientists
using AUTOPROFILER in their workflows were able to make serendipitous discov-
eries about their data when the system plotted data they would not have thought to
check manually.

6. Chapter 4: AUTOPROFILER is released as an open-source system at https://

github.com/cmudig/AutoProfiler.
7. Chapter 5: We show how to leverage a user’s analysis history to create interactive

data profiles beyond the current data in memory. Our system, SOLAS, provides an
extensible approach for logging user analysis code, weighing, and combining data
interactions during analysis.

8. Chapter 5: We demonstrate how to use the semantics of the data returned from
specific analytical function calls to visualize them with task-specific data profiles.
These task-specific visualizations often include data from previous analysis steps.
We present the results from an online user survey with 87 participants that shows
these encodings are preferred by users.

9. Chapter 5: We introduce a method for aggregating over history to model user inter-
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est in columns and to update inferred data types based on data transformations.
10. Chapter 5: SOLAS is released as an open-source system at https://github.com/

cmudig/solas.
11. Chapter 6: We describe how to profile text datasets through different data repre-

sentations. This includes both traditional tabular attributes, along with multi-valued
list attributes that may correspond to spans of the text, and vector embeddings. We
present a configurable data schema for describing text attributes from arbitrary levels
of document granularity and cardinality.

12. Chapter 6: We present TEXTURE, an interactive text exploration tool that helps
users profile and explore their text data through overview visualizations, filtering,
and contextualizing descriptive attributes.

13. Chapter 6: We present results from a user study with 10 expert participants that
shows how TEXTURE is expressive enough to analyze datasets from these 10 differ-
ent tasks and helps users learn new things about their data and make new insights.

14. Chapter 6: TEXTURE is released as an open-source system at https://github.
com/cmudig/Texture.

7.2 Discussion and Future Directions

This thesis has presented a series of systems that develop an approach for building inter-
active data visualization tools designed to help users quickly explore and make sense of
their data while programming. These systems allow users to concentrate on writing code to
manipulate and model their data, then use readily interactive tools to quickly interpret the
results. We reflect on this approach and review opportunities for future research.

7.2.1 Complementing Data Programming with Interactive Interfaces

Each of the tools in this thesis help users perform data actions in UIs that are either hard
or just tedious to accomplish through code. Manually cross filtering data with code is
quite hard; plotting the same histogram after each data change is tedious. AUTOPROFILER,
SOLAS, and TEXTURE automate some of the common yet tedious steps of data exploration
like manually specifying charts, and then make it possible for users to interactively explore
their data to ask follow-up questions.

However code is not without its merits—many programming libraries are highly ex-
pressive and configurable, making it easier to do custom analyses that would be difficult to
fully support in UIs. Where should we draw the line between interactive interfaces that can
speed up common analysis tasks vs configurable coding tools? One way to conceptualize
this is through the cliff of expressivity inherent in interactive UIs. Data interfaces are de-
signed and implemented for specific tasks. For example, the interactive data profiling tools
in this thesis display automatic data overviews and support predefined methods of data in-
teraction. However, users might desire alternative ways of visualizing their data or wish to
apply a unique filter not currently supported in the UI. In other words, users will inevitably
encounter the limits of a tool’s expressivity.

Many traditional data analysis platforms tackle this expressivity gap with a monolithic
design—cramming every conceivable way to interact with data into a single UI. However,
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that all-in-one approach often backfires: the constant context-switching makes them hard
to adopt and integrate into varied workflows. In contrast, interactive data profiling tools
are designed to address common, repetitive tasks and to fit within a larger ecosystem of
programming environments. Integrating such tools into platforms like Jupyter notebooks
holds considerable potential for creating a central, interconnected ecosystem. However,
this integration can be fragile. Promising research directions, such as projects like any-
widget [105], are addressing these challenges by developing interface specifications. For
a truly interconnected ecosystem of tools, we need both robust interface specifications and
common data specifications, enabling different tools to operate on shared data abstractions
and link together seamlessly.

To further address the ”cliff of expressivity,” interactive tools should facilitate a smooth
handoff back to code, even through very simple interactions. For example, AUTOPROFILER

facilitates the export of code back into the programming context, and prior research on APIs
like Mage formalize ways of navigating this handoff [82]. Regardless of the specific hand-
off mechanism, we argue that research in interactive tools should not only consider the
interactions within the tool itself but also how these tools fit into larger analytical work-
flows and facilitate seamless transitions to and from other systems, particularly code-based
environments.

7.2.2 Hierarchical Data Profiling for Unstructured Data

Future research could explore the extension of interactive data profiling to other data modal-
ities. In particular, unstructured datasets beyond text such as collections of images or
videos, stand to benefit significantly from interactive data profiling tools. Building on the
design principles of TEXTURE, an image profiling tool could allow users to define different
structured representations of their images (e.g. color, objects, lighting) and then filter, sort,
and explore the data through these derived attributes.

The concept of hierarchical data, central to TEXTURE, is particularly promising for
making sense of rich, unstructured data collections. For instance, with lengthy text docu-
ments or PDFs, different types of information might be derived at various levels of hierar-
chy, such as paragraphs or chapters. These hierarchical summaries could then be used to
navigate to interesting subsections of the document. This same concept could be applied to
images or videos that possess semantic sub-units relevant for analysis like areas of an im-
age or a segment of a video. Future research can build upon the methods developed in this
thesis and in TEXTURE to both automatically derive representations at each of these hier-
archical levels (potentially using advanced AI models) and to develop interactive interfaces
for navigating this complex information.

7.2.3 Verifying AI-Authored Code with Interactive Interfaces

The interactive data profiling tools presented in this thesis rely on the user’s initiative to
conceptualize and create meaningful data attributes through code, which are then analyzed
in the system. Recently, the advent of AI and agentic code authoring tools is changing how
individuals code and work with data, suggesting that an increasing proportion of this code
will be authored by AI models [49, 72].
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As AI assistants write an ever-larger share of data-processing code, interactive data
profiling tools become even more crucial for users to verify the results produced by their
AI assistants. For example, interactive data profiling systems can help users make sense
of results from analysis and verify that AI authored code does not introduce unintentional
errors into datasets. As the time it takes to write code drops, lightweight and integrated
interfaces can help users profile their data without slowing down the analysis process.

7.2.4 AI-Powered Data Profiles

Beyond authoring analysis code, powerful AI models offer potential in enhancing data
profiling directly through their ability to generate meaningful data overviews. For example,
AI models can be used to reason about semantic concepts within a dataset to identify which
subsets are particularly interesting or relevant for exploration [133].

More mechanically, AI models are already being employed to transform unstructured
data into shorter, structured forms that are more conducive to data profiling [10, 113].
Many insightful data columns are difficult to derive precisely from unstructured datasets
using code alone. For instance, deriving the number of users mentioned in a series of paper
abstracts might require numerous complex string matches if done through code, but can
often be extracted trivially with LLMs. This presents an opportunity to rapidly transform
datasets using LLMs and then employ interactive data profiles to make sense of the results,
further speeding up the feedback loop between manipulating and exploring data.

7.3 Conclusion

In conclusion, if you read this far—thank you! The overarching goal of this thesis has
been to make it easier for people to understand their data while programming. This thesis
has introduced the design, implementation, and study of a series of systems for Interactive
Data Profiling. AUTOPROFILER, SOLAS, and TEXTURE have been used by participants
across numerous lab and deployment studies, scientists, and the open-source community.
Looking forward, as the volume and complexity of data continues to grow, the importance
of efficient and intuitive data profiling tools will only increase, making such systems a
critical piece of effective data exploration and analysis.
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